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Abstract—There has been growing interest in the 
electrification of medium- and heavy-duty vehicles (M-HDVs) 
in real-world, regional distribution applications. Fleet dispatch 
optimization of battery-electric trucks (BETs) is critical given 
the limited onboard energy, charging characteristics, and 
operational considerations. Our paper proposes a bi-level 
hierarchical method to optimize BET dispatch during pickup 
and delivery runs. With any route/scheduling change, the 
average speed, travel time, and energy consumption from one 
location to another will change accordingly because of the 
weight of the goods and the real-time traffic condition. So, the 
“electric vehicle routing problem” was extended to include 
pickup and delivery, time windows, and partial recharge. The 
proposed algorithm significantly reduces the operation cost of 
the BET fleet considering labor, energy consumption, and time 
window penalties without compromising computational 
efficiency. 
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I. INTRODUCTION 

A. Motivation and Objectives 
Over the last decade, significant progress has been made on 
vehicle fleet electrification, especially for light-duty 
vehicles. Recently, there have been increasing interest in 
electrifying medium-duty and heavy-duty vehicles. For 
instance, heavy-duty battery-electric trucks (BETs) have 
been successfully demonstrated in drayage application. Now, 
there are efforts to demonstrate the use of these trucks in 
regional distribution and other applications. 

BETs operating in the regional distribution application 
will return to home base daily and can be charged overnight. 
However, due to their limited range and long charging time, 
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care must be taken when planning the routes and schedules of 
these trucks. The fleet must ensure that the route distance does 
not exceed the expected range of the BET. If it is necessary to 
assign a BET to serve a route with distance longer than the 
expected range, an en-route charging station needs to be 
identified and the required charging time needs to be included 
in the schedule. Similarly, if it is necessary to assign a BET to 
serve multiple routes in the day, required charging times 
between consecutive routes need to be included in the 
schedule to ensure that the BET can return to the depot before 
its battery is fully depleted. 

B. Literature Review 
Originated from the traveling salesman problem (TSP), the 
problem of dispatching vehicles for delivery of items has 
been investigated for decades in the field of operation 
research. TSP, an NP-hard problem in combinatorial 
optimization, aims to find the shortest distance loop among 
multiple locations. Despite the complexity, many existing 
methods are able to solve the problem efficiently, such as [1, 
2]. Later, as an extension of TSP, the vehicle routing problem 
(VRP) is also well studied. Instead of a single salesman 
searching an optimal route, VRP considers the routing of 
multiple vehicles cooperatively, which is very close to our 
routing and scheduling problem. Therefore, in this section, 
we briefly review the studies by firstly combing the 
variations of VRP, and then introducing the major methods 
of solving VRP. 

The majority of the real-world logistics problems are often 
more complex than the classical VRP [3]. Therefore, studies 
of VRP usually try to extend the classical VRP by adding 
further constraints. For instance, the capacitated vehicle 
routing problem (CVRP) is defined by adding the carrying 
capacity limitation of the vehicles [4], and the vehicle routing 
problem with time windows (VRPTW) is defined by adding 
the scheduled time window of each customer [5]. Also, VRP 

with pickup and delivery (VRPPD) studies the scenario that 
customers may request services with pickup and delivery [6]. 
With the electrification of the vehicle fleet, more and more 
research turns to the topic of the “electric vehicle routing 
problem” (E-VRP) and its extensions. For E-VRPs, the 
possibility of recharging at available charging stations is 
considered such as [7]-[9]. However, the charging strategy 
enormously increases the complexity of the problem, and a 
certain level of simplification is conducted in the existing 
works. 

Considering the complexity of the VRP, an essential goal 
of the algorithm design is to balance the computation time and 
the optimality of the solution. The metaheuristic algorithms 
and heuristic algorithms are most commonly used to save the 
computational load. For example, Bard et al. proposed a 
branch and cut algorithm [10] to solve the VRP formulated 
with a mixed-integer linear programming problem. An 
adaptive large neighborhood search (ALNS) algorithm was 
proposed by Keskin et al. for the E-VRP with partial 
recharging strategies [11]. Simulated annealing (SA) and 
genetic algorithm (GA) approaches were applied by Omidwar 
et al. to minimize travel distances, time, and emissions [12]. 
Rizzoli et al. utilized ant colony optimization (ACO) and 
validated the performance with real-world data [13]. 
Combining GA, large neighborhood search (LNS), local 
search and dynamic programming (DP), Hiermann et al. 
proposed an algorithm for the problem with the mix of 
internal-combustion engine vehicles (ICEVs), electric 
vehicles (EVs), and plug-in hybrid electric vehicles (PHEVs) 
[14]. 

C. Organization of the Paper 
The remainder of this paper is organized as follows. Section 
II formulates the mathematical problem, Section III 
describes the bi-level hierarchical method, Section IV 
presents the simulation-based analysis, and Section V wraps 
up the paper with the concluding remarks. 
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Figure 2. Graph model (the arcs within set V and set C are omitted, 
the arcs between set V and set C are simplified). 
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Figure 1. Illustration of the problem. 



  

II. PROBLEM FORMULATION 
 
The problem concerned in this study is illustrated in Figure 
1. On each operation day, a set of customers would schedule 
services for pickup and delivery as shown in blue circles and 
triangles. The same indices of the locations denote the 
request from an identical customer. The green box denotes 
the home base of a fleet of BETs, where a charging station is 
deployed at the home base to ensure the overnight charging.  
The BETs should start from and return to the home base 
within the working hours. Also, there could be a few 
charging stations located around the operation region. To 
extend the range of BETs, opportunistic charging is allowed. 
Also, the opportunistic charging is set to be flexible to 
support the partial charging strategy. It should be noted that 
with the change of route and schedule, the average speed, 
travel time, and energy consumption from one location to 
another will change accordingly because of the weight of the 
goods and the real-time traffic condition. The proposed 
problem setup is defined as the “electric vehicle routing 
problem with pickup and delivery, time windows, and partial 
recharge” (EVRP-PD-TW-PR). If we consider all the key 
locations as nodes and the routes between nodes as 
bidirectional links, we can construct a graph model as shown 
in Figure 2. 

We define node O to be the home base where the BETs 
departure from, while node D denotes the same home base 
where the BETS return. i is an index of a customer, and Vi is 
a set that contains the pickup and delivery nodes of customer 
i. The union of all customers set is named set V. j is an index 
of a charging station, and Cj denotes the charging station j. 
Also, the charging stations have multiple dummy notes 
marked by prime as each charging station can be visited 
multiple times. The union of all charging states with their 
dummy notes is named set C. The goal of the study is to 
generate itineraries for the BETs including the specific routes 
and schedules that could make the whole fleet of vehicles 
operating in an optimal or near-optimal manner. 

Next, to formulate the optimization problem 
mathematically, the variables are defined in TABLE I. The 
variables can be categorized into three types including system 
input, intermediate variables, and decision variables. The 
system inputs are the variables that are given before solving 
the problem. The intermediate variables are those who would 
be updated while searching for the solution. The decision 
variables determine the final itineraries for the fleet of the 
BETs. 

TABLE I.  VARIABLE DEFINITIONS 

Type Variable Name Description 

System Input 

M Number of 
BETs Number of BETs 

𝑘!	 Node type 
1 if charging 
station, 0 if 
customer 

𝑞!	 Cargo weight 
Positive if pickup, 
negative if 
delivery 

𝐿!	
Loading/ 
unloading time 

Time spend at 
node i 

𝑇𝑊!
= [𝑒! , 𝑙!]	

Time window Scheduled time 
by customer i 

𝑊"	 BET capacity 
The maximum 
carrying capacity 
for BET m 

𝐵"	 Maximum SOC 
The maximum 
battery capacity 
for BET m 

𝑇#	
Earliest 
departure time 

The earliest time 
the BETs can 
leave from the 
home base 

𝑇$	
Latest return 
time 

The latest time 
the BETs should 
return to the 
home base 

𝑅%	
Charging cost 
rate 

Cost for 
recharging in 
$/kWh 

𝑅&	 Labor cost rate Salary for the 
drivers, $/hr. 

𝑅'!	
Early penalty 
rate 

Cost rate in $/hr., 
if vehicle arrive 
earlier than the 
scheduled time by 
customer i 

𝑅(!	
Late penalty 
rate 

Cost rate in $/hr., 
if vehicle arriver 
later than the 
scheduled time by 
customer i  

Intermediate 
Variable 

𝜏!"	 Arrival time Arrival time for 
BET m at node i 

𝑤!"	 Current load Current load for 
BET m at node i 

𝑦!"	 Current SOC Current SOC for 
BET m at node i 

𝑡!)"	 Travel time 

Estimated travel 
time for BET m 
from node i to 
node j 

𝐸!)"	
Energy 
consumption 

Estimated 
electricity 
consumption for 
BET m from node 
i to node j 

Decision 
Variable 

𝜏*"	
Actual 
departure time 

The actual time 
the BET m leaves 
from the home 
base 

𝑥!)"	
Node level 
route 

0 if the route 
from i to j is not 
visited by BET, 1 
otherwise 

𝑝!"	 Charging Rate 
Three values for 
slow, regular, and 
super charging 

𝑌!"	
Finish charging 
SOC 

The SOC when 
BET m leaving 
charging station i 

 

The optimization problem is defined by the equations (1)-
(19), aiming to minimize the overall operation cost of one 
day. The objective function has three parts, including energy 
consumption cost, labor cost, and time window penalties. 
Though, the time window constraints are formulated as soft 



  

constraints. Constraint (2) enforces the connectivity of the 
costumers and constraint (3) assures the connectivity of the 
charging stations. Constraints (4) and (5) make sure all the 
BETs should depart from and return to the home base. 
Constraint (6) defines the conservation law that guarantees 
the number of incoming arcs to each node equal to the number 
of outgoing arcs. Constraint (7) makes sure that one 
customer’s pickup and delivery requests are served by an 
identical BET, and the pickup should finish before the 
delivery for the same customer. (8)-(10) regulate time-related 
constraints. Among them, constraint (8) defines how the 
intermediate variable 𝜏!"  updated while searching. (9) and 
(10) narrow down the working hours. Constraint (11) defines 
the update logic for the BETs’ loading status, and constraint 
(12) and (13) specify the initial cargo weight and the cargo 
weight limit while running. Similarly, (14)-(18) are SOC-
related constraints. It should note that 𝑝!"  is a three-value 
discrete variable which indicates the charging rate according 
to three different charging types. Finally, we define 𝑥!#" as a 
binary variable to indicate the selection of the routes. 
min ' 𝐸!#"𝑥!#"𝑅$

!∈('∩)∩$),#∈(,∩)∩$),"∈-

	 

+ ' 𝑡!#"𝑥!#"𝑅.
!∈('∩)∩$),#∈(,∩)∩$),"∈-

+ ' (𝑌!" − 𝑦!")/𝑝!"
!∈$,#∈()∩$),"∈-

∙ 𝑥#!"𝑅. 

+∑ [𝑅/ ∙ 𝑚𝑎𝑥(0, 𝑒! − 𝜏!") + 𝑅0 ∙ 𝑚𝑎𝑥(0, 𝜏!" −!∈),"∈-
𝑙!)],  
                                                                                             
(1) 
subject to: 
a) Graph Constraints 
∑ 𝑥!#"	#∈(,∩)∩$),"∈-	 = 1, ∀𝑖 ∈ (𝑂 ∩ 𝑉)           (2) 
∑ 𝑥!#"	#∈(,∩)∩$) ≤ 1, ∀𝑖 ∈ 𝐶,𝑚 ∈ 𝑀          (3) 
∑ 𝑥!#"	#∈()∩$) = 1, ∀𝑖 ∈ 𝑂,𝑚 ∈ 𝑀                (4) 
∑ 𝑥!#"	!∈()∩$) = 1, ∀𝑗 ∈ 𝐷,𝑚 ∈ 𝑀              (5) 
∑ 𝑥!"#!∈(&∩(∩)) = ∑ 𝑥"+#+∈(,∩(∩)) , ∀𝑗 ∈ (𝑉 ∩ 𝐶),𝑚 ∈ 𝑀  (6) 
∑ 𝑥!-!#	!∈(&∩(∩)) = ∑ 𝑥",!#	"∈((∩)) , ∀𝑉/ ∈ 𝑉, 𝑠 ∈ 𝑉,𝑚 ∈ 𝑀(7) 
 

b) Time constraints 
𝜏#" = (𝜏!" + 𝑡!#" + (1 − 𝑘!)𝑠! + 𝑘! ∙

2!"34!"
5!"

)𝑥!#", ∀𝑖 ∈
(𝑂 ∩ 𝑉 ∩ 𝐶),𝑚 ∈ 𝑀                                                        (8)	
𝜏'" ≥ 𝑇'                                                                        (9) 
𝜏," ≤ 𝑇,                                           (10) 
 

c) Load constraints 
𝑢#" = (𝑤!" + 𝑞!)𝑥!#", ∀𝑖 ∈ (𝑂 ∩ 𝑉 ∩ 𝐶),𝑚 ∈ 𝑀		 	(11)	
𝑢'" = 0                                           (12)	
0 < 𝑢!" ≤ 𝑊"                                  (13)	

 
d) SOC constraints 
𝑦#" = ((1 − 𝑘!) ∙ 𝑦!" + 𝑘! ∙ 𝑌!" − 𝐸!#")	𝑥!#"	 	 	 	(14)	
0 < 𝑦!" ≤ 𝐵"		 	 	 	 	 	 	 	 	                          (15)	
𝑦!" < 𝑌!" ≤ 𝐵"                                  (16)	

𝑝! = 𝑝6	𝑜𝑟	𝑝7	𝑜𝑟	𝑝8                              (17)	
𝑦'" = 𝐵"	 	 	 	 	 	 	 	 	                               (18) 

 
e) Variable constraints 	
	𝑥!#" = 0	𝑜𝑟	1                                                (19)	

III. METHODOLOGY 
VRP is NP-hard and computationally challenging to find 
optimal or near-optimal solutions [5]. This is because during 
real-world dispatch operations, there are many continuous 
decision variables such as partial charging and flexible 
departure times. To solve this in a computationally efficient 
manner, a bi-level hierarchy method has been proposed in the 
paper. In the first level, continuous variables are frozen (i.e., 
discretized) to narrow down the searching space of the 
problem. Thereafter, a metaheuristic method, the Ant Colony 
Optimization (ACO) algorithm (first proposed by [1]), is 
applied to calculate a near-optimal solution. In the second 
level, the variables that were frozen in the previous level are 
fine-tuned around the near-optimal solution from ACO. 

A. Coarse Scheduling 
Coarse scheduling is done using the ACO algorithm. Inspired 
by the ant foraging behavior that the optimal path (usually 
shortest) can be gradually constructed by the convergence of 
the ant pheromone trail, the algorithm is used to find the 
optimal path along a graph. When a group of ants forage, 
they explore randomly at the beginning. The ants lay 
pheromone along the path they walk once they find paths to 
food, and the pheromone on the path can arouse the interest 
of other ants and increase the probability of exploring that 
path. This positive feedback loop will eventually result in a 
path with the highest quantities of pheromone, and such a 
path is near-optimal. 

The ACO algorithm has been proved to be a very efficient 
algorithm to solve VRP [13]. However, departure time and 
recharging strategy are the two continuous decision variables 
that extraordinarily increases the searching efforts. So, the 
departure times were discretized into multiple instances 
within a fixed interval, e.g. 8 AM, 10 AM, and so on. 
Additionally, the charging strategy is set to charge back to 
100% battery capacity and does not change. Then, the ACO 
algorithm is iteratively applied a relatively small data set as 
described above. 

The ACO algorithm has two major stages at each iteration 
- searching and updating. Initially, a number of ants are 
released to “explore the graph” randomly. During searching a 
feasible searching space is determined based on the current 
locations and the values of the intermediate variables. Then, 
the possibilities of visiting the feasible nodes to be explored 
can be calculated based on the existing pheromone level 
defined by (20). 

𝑝(𝑖, 	𝑗) = 9(!,	#)#:(!,	#)$

∑9(!,	#)#:(!,	#)$
	 	 	 																		(20)	

where	(𝑖, 	𝑗)	depicts the arc from node 𝑖 to node 𝑗;	𝜏(𝑖, 	𝑗)	is 
the current pheromone value of this arc; and  𝜂(𝑖, 	𝑗) is a 
heuristic term defined by the a priori. For example, it can be 



  

defined as 1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) 	to attract ants searching the 
closest node. 𝛼  and 𝛽  are two variables to balance the 
importance between the pheromone and the heuristic term. 
The denominator is applied to normalize the overall value 
from 0 to 1. Based on these visitation possibilities, each ant 
decides its next visiting node using the roulette strategy. 
 Once the solution for the current iteration obtained, the 
algorithm goes to the updating stage. Based on the decisions, 
we update the values of the intermediate variables and the 
pheromone level. The pheromone updating strategy shows as 
follows: 

𝛥𝜏 = 	 ∑ 𝑄/𝑐𝑜𝑠𝑡<
6                    (21) 

𝜏(𝑡 + 1)	=	(1 − 𝜌)𝜏(𝑡) +	𝛥𝜏			 	 															(22) 
where the cost in equation (21) is the objective of our 
optimization problem defined as (1); Q is the predefined 
pheromone increasing rate; q is the number of ants that find 
the feasible route in current iteration; 𝜌 is the evaporation 
rate, which is applied to avoid the searching process being 
trapped into local optima. To increase the convergence speed 
of getting the near-optimal solution, we always keep one elite 
ant (i.e., the one with the minimum cost in the previous 
iteration) to the next iteration of the searching process. 

B. Fine Scheduling 
From the Cooperative Dispatching, Routing, and Coarse 
Scheduling level, we get rough itineraries for each BET. 
However, because we simplify the problem in the previous 
level, the flexibilities of the departure time and the 
recharging strategy are lost. The fine scheduling process is 
used to recover the flexibilities by iteratively searching for a 
better solution to approximate the optima. Figure 3 illustrates 
such an idea in the travel distance-time plot. 

In the figure, an example trajectory of a BET calculated 
from the ACO algorithm is depicted, where only one 
customer is served. The gray bars in the figure depict the time 
window constraints including the scheduled time for the 
customer’s pickup and delivery as well as the return time. The 
blue segments denote that the BET stops at the pickup or 
delivery location. The green segment denotes the process of 

recharging. As can be observed, by moving the departure time 
or changing the charging strategy, the trajectory is able to 
better align the time windows to achieve a lower cost. 
However, it should be noted that because of the time-variant 
traffic condition, the shape of the trajectory, specifically, the 
slope of the moved segments, will also change accordingly. 
This requires further tuning of the continuous variables. 
When there are multiple customers and recharging, the tuning 
process can be rather complicated. Therefore, we proposed an 
iterative workflow to solve this tuning process for each BET 
given in Algorithm 1.  

Algorithm 1: Fine tuning process 
1: Start from the route calculated by the ACO 

algorithm 
2: for i from N to 0 (N is the recharging times) 
3:   repeat 
4:     record cost 
5:     if i is not 0 
6: change charging strategy of charging station i 

to minimize the cost from current node to the 
end 

7: change charging strategy of charging station i 
to minimize the cost from current node to the 
end 

8: change charging strategy of charging station i 
to minimize the cost from current node to the 
end 

9: change charging strategy of charging station i 
to minimize the cost from current node to the 
end 

10:     else 
11: change departure time to minimize the overall 

cost 
12: update traffic condition 
13:     end if 
14:   until (recorded cost - current cost) < threshold 
15: end 

C. Heuristic Algorithm 
For validating the proposed bi-level hierarchical method, a 
heuristic algorithm is deployed as the baseline, which uses the 
greedy strategy to search for the feasible solution of the 
proposed optimization problem. The pseudocode of the 
heuristic algorithm is given in Algorithm 2. 

Algorithm 2: Heuristic algorithm 
1: Sort BETs in the order of SOC level from high to 

low 
2: for each BET 
3: manage target nodes based on pickup/delivery 

history of all BETs 
4: if the elements in the target nodes less than 3 
5: add home base into the set of target nodes 
6: end if 
7: sort target nodes in the order of the time 

window constraints from early to late 
8: for each target node 

Figure 3. Illustration of fine scheduling process. 



  

9: if (distance from the current node to the 
target node + distance from the target node 
to the closest charging station) >= rest range 

10: select the unvisited node as next node 
11:                break 
12: else 
13: continue 
14: end if 
15: end 
16: if no feasible next node found 
17: select the closest charging station as the 

next node, use standard charging to the 
100% battery capacity 

18: end if 
19: end 

IV. CASE STUDY 
To validate the proposed bi-level hierarchical method, we 
perform the numerical simulation in this section. The 
previously introduced heuristic algorithm is carried out as a 
baseline. The numerical case study setup (in TABLE II) is 
specified as follows. 

 
TABLE II.   CASE STUDY SETUP 

To mimic the regional dispatching scenario, we generate 
a map on the scale of 70 miles square (i.e., 70 × 70 miles). 
Within this region, we randomly define 5 charging stations 
and 8 customers with 16 corresponding pickup and delivery 
locations. For each location, the loading/unloading time is set 
to be identical to 0.3 hours, and the cargo weight is randomly 
set within 5 tons. Also, the time windows are stochastically 
created no shorter than one hour. We set the working hour of 
the fleet to be from 8 am to 6 pm, and a 4-hour buffer time 
after 6 pm is set such that the late returning is allowed with 
the penalty. The fidelity of the time-variant traffic condition 
is 0.5 hour. Within the 0.5-hour intervals, we define three 

Type Variable Value 
Scenario 
Assumptions 

Map scale 70 × 70 miles 
Number of costumers 8 
Number of charging stations 5 
Loading/unloading time 0.3 hour 
Cargo weight (0, 5] tons 
Working hour [8 am, 6 pm] 
Buffer time 4 hours 
Traffic condition fidelity 0.5 hour 
Vehicle speed 40, 50, 60 mph 
Charging rate 1, 2, 3 hours to full 

capacity 
BET range 150 miles 
BET carrying capacity 20 tons 
Labor cost rate 25 dollars/hour 
Early/late penalty rate 90 dollars/hour 
Charging rate 0.3, 0.5, 0.7 dollars/mile 

ACO 
Parameters 

Number of ants 150 
Number of iterations 600 
Pheromone weight 0.8 
Heuristic term weight 0.1 
Evaporation rate 0.4 
Pheromone increasing rate 5 

Figure 4. Convergence curve of ACO algorithm. 

Figure 5. Shortest route giving by ACO algorithm. 



  

levels of the vehicle speed, namely, 40 mph, 50 mph and 60 
mph, to express different congestion levels. The distance from 
one location to another is calculated by their Euclidian 
distance. As to the charging stations, we use the full charging 
time, 1 hour, 2 hours and 3 hours to depict three types of 
charging, i.e. slow charging, regular charging, and fast 
charging. We further assume the charging process is at a 
linear rate. Therefore, if a BET aims to charge from 50% to 
100% using regular charging, for instance, it will take 1 hour. 
From the BET perspective, we use the remaining range to 
reflect the battery status, and the maximum range of a BET is 
150 miles in this case study. Still, we assume a linear 
relationship between the battery/mileage consumption and 
the driving distance. There are 4 BETs in the fleet, and the 
carrying capacity of each BET is identical to 20 tons. Finally, 
we define the labor cost rate as 25 dollars per hour, the 
early/late penalty rate as 90 dollars per hour, and the charging 
rate for three types as 0.3, 0.5 and 0.7 dollars per mile 
respectively.  

The parameters of the ACO algorithm are specified as 
follows. There are 150 ants searching in parallel for 600 
iterations. The importance of the pheromone, 𝛼, is set to be 
0.8, while the importance of the heuristic term, 𝛽, is set to be 
0.1; The evaporation rate of the pheromone is 0.4, and the 
pheromone increasing rate is 5. The convergence curve of the 
ACO algorithm is shown in Figure 4. In the figure, the blue 
curve shows the performance of the best ant which is kept to 
the following iteration. The red curve shows the average 
performance of the ants that found the feasible route in the 
current iteration. The fluctuation of the red curve indicates the 
randomicity of the exploration within the searching spacing, 
which prevents the search from falling into the local optimum. 

The routes and the dispatching schemes are shown in 
Figure 5. The red circle depicts the home base, and the green 
circles denote the locations of the charging station. The blue 
circles and cross marks connected by the blue dash lines 
represent pairs of the pickup and delivery locations of 
corresponding customers. The travel distance-time plot 
illustrates the solution given by the ACO algorithm (see 
Figure 6). The trajectories are marked with three different 

colors. The red segments show that the BETs travel from one 
location to another; the yellow segments show the 
loading/unloading stages; the green segments show the 
charging stages. The blue bars represent the time window 
constraints. From the figure, we can observe that the 
trajectories align well with the time windows in the conditions 
of the fixed departure time and charging strategy. A lower-
cost alternative can be expected after the Fine Scheduling 
process.  

The results of the Fine Scheduling algorithm are shown in 
Figure 7, and the costs are given in TABLE III. In this 
process, the results from the ACO algorithm are applied. 
Therefore, similar trajectories are demonstrated in the figure. 
By moving the departure time along the time horizon, and 
adjusting the charging strategy, more time window 
constraints can be fulfilled. As a result, much lower cost is 
given. Although the heuristic algorithm is capable of finding 
a feasible solution, the final cost is far from being acceptable. 
On the other hand, the result purely from ACO algorithm can 
already save 30% of the cost. When applying the Fine 
Scheduling algorithm, the overall cost is reduced by 60%. 

TABLE III.  COST COMPARISON FOR DIFFERENT ALGORITHMS 

 ACO 
Algorithm 

ACO + Fine Scheduling 
Algorithm 

Heuristic 
Algorithm 

Cost 1185.7318 673.7622 1681.7737 

V. CONCLUSIONS 
In this paper, we proposed a methodology to route and 
dispatch energy-constrained BETs by a two-step optimization 
of the “electric vehicle routing problem” with pickup and 
delivery, time windows and partial recharge. We first apply 
the ACO algorithm coarsely scheduled the BETs. In order to 
speed up computation, the departure times for BETs were 
discretized, and the charging strategy was fixed. Then, with 
the optimization result from the ACO algorithm, we recover 
the continuity of the problem by the fine scheduling process. 
The case study results show a 30% saving of the operation 
cost comparing the ACO algorithm only with the heuristic 

Figure 6 Travel distance – time plot giving by ACO 
algorithm. 

Figure 7 Travel distance – time plot giving by Fine Scheduling 
algorithm. 



  

algorithm, and a 60% saving comparing the bi-level method 
with the heuristic algorithm. This is because the ACO 
algorithm can find out the near optimal solution out of a large 
set of feasible solutions and allowing flexible departure time 
and charging strategies can further satisfy the time window 
requirement of the customers. Some possible directions for 
future research include adding detailed energy consumption 
and travel time estimation models to obtain more accurate 
itineraries and incorporating real-world scenarios to evaluate 
the system effectiveness.  
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