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End-to-End Spatio-Temporal Attention-Based Lane-Change Intention
Prediction from Multi-Perspective Cameras

Zhougiao Zhao, Zhensong Wei, Danyang Tian, Bryan Reimer, Pnina Gershon, and Ehsan Moradi-Pari

Abstract— Advanced Driver Assistance Systems (ADAS) with
proactive alerts have been used to increase driving safety. Such
systems’ performance greatly depends on how accurately and
quickly the risky situations and maneuvers are detected. Existing
ADAS provide warnings based on the vehicle’s operational
status, detection of environments, and the drivers’ overt actions
(e.g., using turn signals or steering wheels), which may not
give drivers as much as optimal time to react. In this paper,
we proposed a spatio-temporal attention-based neural network
to predict drivers’ lane-change intention by fusing the videos
from both in-cabin and forward perspectives. The Convolu-
tional Neural Network (CNN)-Recursive Neural Network (RNN)
network architecture was leveraged to extract both the spatial
and temporal information. On top of this network backbone
structure, the feature maps from different time steps and
perspectives were fused using multi-head self-attention at each
resolution of the CNN. The proposed model was trained and
evaluated using a processed subset of the MIT Advanced Vehicle
Technology (MIT-AVT) dataset which contains synchronized
CAN data, 11058-second videos from 3 different views, 548
lane-change events, and 274 non-lane-change events performed
by 83 drivers. The results demonstrate that the model achieves
87% F1-score within the 1-second validation window and 70 %
F1-score within the 5-second validation window with real-time
performance.

I. INTRODUCTION

Improper lane changing is one of the top causes of
accidents in the transportation system. Common examples
of improper lane changing include changing lanes without
utilizing the blinker or thoroughly inspecting the surrounding
traffic, particularly the blind spots for vehicles, bicycles, or
pedestrians in an adjacent lane. Such actions leave the sur-
rounding road users little time to respond, and accidents were
more likely to happen. According to the National Highway
Traffic Safety Administration’s (NHTSA) General Estimates
System (GES) collision database [1], 539,000 crashes (9%
of all crashes) involving 1,078,000 cars were caused by
lane changes in the US in 1999. Among them, 14% of the
lane change crashes led to some form of injury, and major
injuries occurred much more frequently on dark unlit portions
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of interstates [2]. To improve lane-change safety, numerous
ADAS have been deployed to alert drivers when a potential
conflict is detected during or even before changing lanes. This
helps drivers better understand the surrounding environment
and thus make better decisions [3]. However, ADAS equipped
in existing commercial vehicles only provide warnings based
on vehicle’s operational status. Systems lack of environmental
context, and drivers’ overt actions (e.g., using turn signals
or steering wheels) can lead to late warnings and may not
provide drivers sufficient time to react.

With the development of Connected and Autonomous
Vehicle (CAV) technologies, vehicles equipped with sensors
and communication devices are capable of perceiving, un-
derstanding, and sharing driving scenarios, which makes the
early prediction of lane-change maneuvers possible [4]. The
most common input for maneuver prediction is the past tra-
jectory of the host vehicle. From this, speed, acceleration, and
position can be extracted and fed into the prediction system.
In addition to the host vehicle’s trajectory, its relation with
surrounding vehicles is also commonly used as supplementary
input to enhance prediction accuracy. Such methods usually
omit drivers’ behaviors that are hypothesized to enhance
predictions, such as mirror checking, and could potentially
delay the lane-change maneuver prediction time. Therefore,
in this paper, we present an innovative method to model
drivers’ lane-change intention from multi-perspective cameras
that include both drivers’ views and forward view.

In summary, the contributions of this paper are listed
below:

o We implemented a semi-automatic method to annotate

the start and finish time of 548 lane-change events and
274 non-lane-change events performed by 83 drivers
from the MIT-AVT Dataset. The processed lane-change
dataset is drawn from high-definition video streams from
forward-facing view, driver’s face view, and driver’s
body view, which were synchronized with the vehicles’
Controller Area Network (CAN) messages at 30Hz.

o We proposed a CNN-RNN-based neural network with
self-attention-based multi-modal fusion architecture to
extract spatio-temporal features from multiple videos and
CAN data.

o Empirical analysis and evaluations show that the pro-
posed model has reached state-of-the-art performance.
The present drawbacks of end-to-end lane change pre-
diction models were investigated and the relation be-
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tween pre-lane-change data and lane-change intention of
drivers was analyzed.

The remainder of this paper is as follows: Section II in-
troduces the related existing work on lane-change prediction.
Section III elaborates on the used lane change dataset pre-
processing and summary, followed by the problem formula-
tion and the proposed methodology for driver’s lane-change
intention prediction. Section V shows the sensitivity evalu-
ation results of the proposed model in different scenarios.
Finally, conclusion and future directions are presented in
Section VL.

II. RELATED WORK

The research on lane-change prediction has been explored
for decades [5]. With a large number of open-source trajectory
datasets [6], [7], numerous studies have been conducted using
trajectory prediction for lane-change intention recognition
[8]-[11]. Kou et al. and Girasc et al. [8], [9] used only
the past trajectory to predict the vehicle’s future trajectory
and maneuvers. Zhang et al. [10] considered the speed
and position relationship between the target vehicle and
surrounding vehicles in addition to the trajectory data and
used the Dempster—Shafer (D-S) evidence theory to calculate
the lane-change probability. Liao et al. [11] applied inverse
reinforcement learning (IRL) to calculate the probability of
all possible lane-change trajectories.

With the development of computer vision and machine
learning technologies, more research has been turning to the
use of vision sensors to forecast lane changes. For example,
Wei et al. [12] used only single-frame forward-view images to
predict lane changes. However, because temporal information
was not utilized, the prediction performance was unsatisfac-
tory. Video action recognition is one of the representative
tasks for video understanding, which has been used for behav-
ior prediction. The state-of-the-art approaches for video-based
action recognition include CNN-RNN networks [13], two-
stream networks [14], temporal segment networks [15], 13D
[16], Non-local [17] and SlowFast [18]. Recently, Biparva
et al. [19] applied four different video action recognition
methods for lane-change classification and prediction of sur-
rounding vehicles. The implemented models achieved good
prediction performance in terms of both accuracy and Time-
To-Maneuver (TTM) with only the forward-view camera
in the PREVENTION dataset [20]. To further improve the
performance, in-cabin videos have been applied to leverage
the monitoring of drivers’ behaviors. As a representative
example of in-cabin driving monitoring dataset, Brain4Cars
[21] has been well explored by different researchers [22]-
[24]. For example, Jain et al. argued that, by using the in-
cabin camera, they can anticipate driving maneuvers up to
3.5 seconds before they occurred [21], which outperforms
trajectory-based prediction methods (e.g., 1.1 seconds in ad-
vance for lane-change maneuvers [25]). However, research on
maneuver/intention prediction using in-cabin video steams is
still at an early stage. The existing lane-change datasets with

Fig. 1.

Different video views of MIT-AVT Dataset.

in-cabin videos have a limited number of lane-change events
and inadequate annotating quality. In addition, the current
studies about vision-based lane-change anticipation heavily
rely on the existing video action recognition approaches,
while cutting-edge neural network architectures such as self-
attention mechanisms have not been well investigated.

III. DATASET PREPARATION
A. MIT Advanced Vehicle Technology (MIT-AVT) Dataset

A subset of the MIT-AVT datasets [26] were used to
search lane-change events and prepared for model training
that is described in Section IV. The MIT-AVT dataset in-
cludes driving data collected through various sensors from
different models vehicles in both long-term (over a year
per driver) and medium-term (one month per driver) studies.
The recorded data streams include Inertial Measurement Unit
(IMU), Global Positioning System (GPS), CAN messages,
and high-definition video streams of driver’s face, driver’s
cabin, forward roadway, and instrument cluster (on selected
vehicles).

The MIT-AVT dataset has been used to explore driver-
automation interaction [27]-[30], etc., at the same time,
the MIT-AVT dataset contains a large number of pure
human-driving or longitudinal automation-only driving peri-
ods, which are suitable for understanding drivers’ lane-change
behavior. In this paper, we used high-definition video streams
and CAN messages for lane-change intention prediction. As
shown in Fig. 1, the top left view is referred as the front
view, the top right view is referred as the face view, and
the bottom left view is referred as the body view. The face
view depicts the driver’s facial expressions, head attitude, and
head angle, while the body view captures the body positions
and gestures. The front view provides context information
about the area in front of the ego vehicle. The information
of steering angles, speeds, and automation levels is coming
from the CAN messages.

B. Lane Mark Detection

To use the MIT-AVT dataset for lane-change intention
prediction, we selected lane-change events based on the
front-view video streams. 200 human-driving or longitudinal-
automation-only driving trips with highway driving were
selected from the dataset, with an average of six high-speed

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:32:13 UTC from IEEE Xplore. Restrictions apply.



left lane slope
sight lane slope
———— lane change event

[¢] 200 400 600 BOO

(e)

Fig. 2. Lane change detection process.

lane-change events in every 30-minute trip. This amount of
data makes manual annotation an extremely time-consuming
task. To solve this issue, a machine-learning-based semi-
automatic method was implemented to identify the coarse
start and finish time of the lane-change events. The precise
lane-change event time was then determined manually. The
network implemented for selecting the lane-change events
is called You Only Look Once for Panoptic (YOLOP) [31],
which is a state-of-the-art perception method with high ac-
curacy and robustness to perform traffic object detection,
drivable area segmentation, and lane detection simultaneously
(see Fig. 2 (a)). For the task of recognizing lane-change
events, only the output of lane detection is needed. Our
experiments show that the lane detection of YOLOP works
effectively even when lighting is low or lane markings are
barely visible.

C. Lane-Change Events Annotation and CAN Data Equal-
ization

The detected lanes from the YOLOP network are repre-
sented in the form of a binary mask, and the tentative lane
mark pixels have the value of one. We used polynomial
approximation to calculate the left and right lanes, as shown
in Fig. 2 (b). During a lane-change event, the slope of one
side of the lane will initially increase to infinity, then be
miss-detected, and finally be re-detected with a low slope
value. The slope of the opposite side of the lane will initially
decrease, then be miss-detected, and finally be re-detected
going from a high slope value to a low slope value. Based
on this feature, the lane-change events and their coarse start
and finish time can be labeled automatically, as shown in
Fig. 2 (c). The parameters were tuned based on manually
labeled sample lane-change events. It should be noted that
the parameters were tuned to be sensitive to slope change
and missed detection of lane marks so that all the suspicious
events could be selected as candidate events. As a result,
the false positive rate is also high, therefore, it’s necessary
to delete those false positive events through manual video

review. This can be done efficiently using VidStep [32] with
high playback speed. VidStep is a frame-by-frame in-browser
video player and annotator, which was originally designed to
label driver glances. It offers the ability to play videos at
various playback speeds and keyboard shortcuts for frame
control and annotation.

The definition of a lane-change start and finish time is
contestant across published studies. For example, Scheel et
al. [25] used a 3-second criterion, before the surrounding
target vehicle’s lane assignment changes in simulation, to
label a lane change. Wu et al. [33] defined the start-point and
end-point by calculating the heading angle 6 of the vehicle.
As a result, the performances of TTM were not comparable.
In this paper, we defined the beginning and end of lateral
displacement (i.e., pixel movement perpendicular to the road
direction) as the start and finish points of lane-change events.
The lane deviation should not be used as the criteria because
some drivers do not keep in the center of the lane long before
and after the lane change.

The two CAN messages used for lane-change intention
prediction are steering angle and vehicle speed. However, it’s
worth mentioning that the scale of steering angle data varies
with vehicle models. Additionally, even for the same vehicle,
the scale of steering angle data can vary due to tire wear.
Scalars were used to equalize the steering angle distributions
for trip data collected by different vehicles.

D. Lane-Change Dataset Summary

Since the drivers may behave differently when conducting
consecutive lane changes, we eliminated the lane-change
events that happened close in time (i.e., within 10 seconds).
The non-lane-change events were randomly selected within
the period that was far away (15 seconds) from the selected
lane-change events. To make sure that the selected non-
lane-change samples were not affected by the lane-change
maneuvers, we selected those that were 5 seconds before or
after the lane-change events. The statistics of the lane-change
dataset are shown in Fig. 3. The average lane-change duration
is 6 seconds, and the lane-change speed ranges from 37 mph
to 85 mph. Each sample event was trimmed starting from 5
seconds before to 2 seconds after the lane change for data
balancing purpose. The lane-change dataset of 822 selected
events from 83 drivers includes 261 left lane changes, 287
right lane changes, and 274 staying in the same lane. This
processed dataset is a large lane-change-event dataset with
a variety of drivers comprising both in-cabin and forward-
facing video streams, and CAN messages.

IV. DRIVER INTENTION MODELING

Although drivers’ lane-change intentions are implicit, we
hypothesize they would give hints by making expressions that
would reveal their intentions. For instance, a driver might shift
his/her body toward the direction of a potential lane change
and check mirrors and blind spots. Alternatively, if a driver
tries to pass a slow car ahead, such contextual information can
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be an indicator of incoming lane-change maneuvers. As such,
the spatio-temporal features of the pre-lane-change behaviors
may contain information about drivers’ lane-change intentions
and aid in the early prediction of lane-change maneuvers. In
this paper, we proposed and trained a model to predict the
driver’s lane-change intentions by using the pre-lane-change
videos, synchronized CAN data, and the corresponding future
maneuver tags. The problem can be then formulated as a
multi-classification problem, with the three classes being left
lane change, right lane change, and staying in the same lane
(or going straight), represented by L, R, and S.

A. Backbone Network

As reviewed in Section II, CNN-RNN architecture is a
simple yet efficient approach to extracting spatio-temporal
features from videos, which is often used for video clas-
sification. The goal of CNN models is to extract the high-
level spatial information of each frame, and the goal of RNN
models is to extract the temporal correlation between the
images by keeping a memory of past images. The features
are then fed into fully connected layers, also known as
multilayer perceptron (MLP), to get the classification output.
As shown in Fig. 4, the backbone of the proposed model
follows the CNN-RNN scheme, where we used ResNetl8
[34] as the CNN model and GRU [35] as the RNN model.
The classification output head was used to predict the future
maneuver which falls in one of the three classes that belong
to R3.

B. Attention Mechanism

Inspired by [36], the self-attention mechanism of trans-
formers [37] was implemented in addition to the original
CNN-RNN architecture, to capture and incorporate the con-
text information from different video perspectives and time
steps. Following the prior studies on the image-recognition

application of transformers [38], the input 2 € R(€*4=) to the
transformer module is the embedding of the grid-structured
feature maps. C' represents the number of tokens (i.e., the
encoded sequence of integers) and d, is the dimension of the
feature vectors in each token. In this study, this embedded
token is concatenated from the CNN features of different
perspectives and time steps. Then, the transformer blocks
apply linear projections for calculating a set of queries, keys,
and values, denoted as (), K, and V, as shown below:

Q=aW9K=aWE V=aWwV (1)

where W@ € RU=xdQ) WK ¢ Rldaxdx) and WV €
R(4=xdv) are parameter matrices. Then the attention is calcu-
lated using the dot products between @), K, and V/, as shown
below:
Attention(Q, . V) = softmar(PE_ v @)
ention(Q, K, V) = softmazr(———
Vi
Finally, the calculated attention will go through MLP to form
the output y, which has the same size as input x.

y = M LP(Attention(Q,K,V)) + « 3)

C. Proposed Network

The architecture of the proposed network is shown in Fig.
5. The inputs are videos from the three different views and
one-dimensional CAN messages (i.e., vehicle speed and steer-
ing angle). The frequency of the collected and synchronized
videos and CAN messages is 10Hz. The frames from different
views and different time steps were resized into 256 by 256, to
save computational time and power, and sent into the ResNet
separately. The one-dimensional CAN messages were fused
in the Transformer blocks of this network.

As shown in Fig. 5, the feature maps from different views
and different time steps are fused multiple times at differ-
ent scales (i.e., after each ResNet layer). The self-attention
transformers require the input to be a two-dimensional token
structure. Therefore, the feature maps from the ResNet are
first reshaped and concatenated to the required dimension
before fed into the transformers. More specifically, let a
feature map of a single view and single time step be a 3D
tensor of dimension H x W x C, where H and W are the
height and width and C' is the number of channels. All the
features are reshaped and stacked together to form a sequence
of dimension (V x T x H x W) x C (illustrated by the green
blocks), where V' is the number of views and 1" is the number
of frames. Then, a learnable positional embedding feature
(illustrated by the light blue block) reshaped to the same size
is added to the input feature map so that the network can
infer spatial-temporal dependencies between different tokens
while training. Also, the CAN messages are broadcasted and
copied to the size of positional embedding denoting velocity
embedding and steering embedding (illustrated by the orange
and blue blocks). Finally, the transformer output is reshaped
back to the size of its input and is fed into the following
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Resnet residual blocks. Since the same structure is applied
multiple times at each down-sampling level along every
residual block, it is computationally expensive to operate all
the above calculations on the original-sized feature maps.
Therefore, the transformer input is first down-sampled to
H = W = 8, then the output is resized back and added
to the input to form a residual connection (illustrated by the
red blocks).

After the CNN feature extraction and dense feature fusion
via spatio-temporal transformers, the output feature map
becomes 8 x 8 x 512 for each view and each time step.
We reduced their dimension to 512 by average pooling and
fused them by concatenation. The size of the fused feature
is (512 x V) x T'. This fused feature vector is a condensed
environment representation that captures the overall spatio-
temporal context of the pre-lane-change and can be used for
lane-change intention prediction. The fused feature vector is
then sent to the GRU network to further extract the temporal
relationship between frames. The GRU has one layer and the
number of features in the hidden state is 512. As a result, the
network reduces the size of the feature from (512 x V) x T
to 512 x 1. Finally, the MLP network (i.e, output head) is
a series of fully connected layers to reduce the number of
channels to 3 at the last layer, which consists of 3 hidden
layers with 256, 128, and 64 units.

V. EXPERIMENTS AND RESULTS
A. Assumptions and Specifications

The implemented CNN backbone is a pre-trained
ResNet18. The transformer block at each resolution has eight
layers and each layer has four attention heads. As suggested
by [36], we used the AdamW optimizer, which is a variant of
Adam. Weight decay is set to 0.01, and Adam beta values to
the PyTorch defaults of 0.9 and 0.999. In addition, the loss

Transformer Block

Attention Fuse

Position Embedding

: Body
View

v
Prediction

Steering Embedding

Concatenate Fuse

Proposed spatio-temporal attention-based network.

function is the classic cross-entropy loss for the classification
task. We trained the models with 2 RTX A6000 GPUs. We
randomly split the entire dataset into a training subset of
70% and a validation subset of 30%.For model training and
evaluation, the following periods of lane-change events were
defined:

o Pre-Lane-Change Period: The Pre-Lane-Change Period
refers to the period that starts five seconds before lane
changes.

o Observation Window: The observation window was de-
fined as a sliding window that contains the time-series
data before the predicted time point. The wider the
observation window is, the more historical information
is utilized for prediction.

e Ground Truth (GT) Time: As the drivers’ intentions are
implicit, it was assumed that the pre-lane-change periods
contain information about drivers’ lane change inten-
tions. The Lane Change Intention “GT” is a subset of the
pre-lane-change period, in which they were labeled as L
and R for training and validation. Regarding the non-
lane-change events, the whole periods were labeled as
S. The Lane Change Intention “GT” period ends at the
start time of the lane-change events and its start time was
defined as GT time. GT time is a tunable hyperparameter.

o Validation Time: The Validation Period is also a subset
of the pre-lane-change period. The observation windows
slide along it while validating the model’s performance.
Regarding non-lane-change events, the whole periods
were used for validation. The Validation Period ends at
the start time of the lane-change events and its start time
was defined as Validation Time. Validation Time is a
parameter to be decided for different experiments.
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TABLE I
RESULTS OF EXPERIMENT 1: STACNN-GRU WITH SINGLE VIDEO

STREAM
Face Body Front
Acc  727%  69.0% 58.9%

B. Metrics

For the prediction measurement, Accuracy (Acc), Precision
(Pr), Recall (Re), and F1 score were used to evaluate the
performance of the intention prediction model. It should be
noted that the maneuvers herein only refer to the class L
and R. Following [21], the definitions are shown in Equation

@-(7).

Aee= tp+ fp j];‘;ptjrptsp +mp @
"t fIZ)Jr fop ©)
e:tp+;§+mp ©

F1=2x % (7)

where true predictions (¢p) represent correct maneuver predic-
tions, true straight predictions (tsp) represent correct predic-
tions when there’s no lane change, false predictions (fp) rep-
resent false maneuver predictions, false positive predictions
(fpp) represent the predictions of maneuvers, but actually
driving straight, and missed predictions (mp) represent the
prediction of driving straight but driver performs a maneuver.

C. Lane-Change Intention Prediction Results

This section presents the experiments that were conducted
to validate the proposed network, which was named as Spatio-
Temporal Attention-based CNN-GRU (STACNN-GRU).

1) Experiment 1: STACNN-GRU with single video stream:
To investigate the effects of different views on lane-change
intention prediction, the network was trained using only a
single video streaming in the first experiment. Additionally,
the CAN messages were not integrated into the network.
The observation window, the GT time, and the validation
time were set up as 1 second, 1 second, and 3 seconds,
respectively. The results are shown in TABLE 1. As can be
seen from the results, the prediction using the face view
reaches the highest accuracy, 72.7%, which is 3.7% higher
than the body view, and 13.8% higher than the front view.
This result indicates that the face view has the most spatio-
temporal information, such as the head movement for mirror-
checking, representing the lane-change intention at the early
stage; the spatio-temporal information from the body view,
such as the arm movement for using turn signals, can also
help to infer the lane-change intention at a lower level of
accuracy; same as the expectation, the front view showing
the forward roadway plays the least important role for the
early stage lane-change prediction.

TABLE 1T
RESULTS OF EXPERIMENT 2: STACNN-GRU VS CNN-GRU

GT Time GT Time GT Time
Acc
1s 2s 3s
CNN-GRU 79.0% 80.7% 75.4%
STACNN-GRU 85.5% 83.1% 78.4%
(proposed)
TABLE III

RESULTS OF EXPERIMENT 3: STACNN-GRU WITH DIFFERENT SIZES OF
OBSERVATION WINDOW

GT Time GT Time GT Time
Acc
2s 3s 4s
Observation Window: 1s 79.3% 72.1% 64.9%
Observation Window: 1.5s 83.1% 78.4% 70.2 %

2) Experiment 2: STACNN-GRU VS CNN-GRU: To prove
the effectiveness of the self-attention mechanism, the per-
formances between the proposed network and the CNN-
GRU network were compared in the second experiment. The
only difference between those two is that the baseline CNN-
GRU network does not have attention-based fusion blocks at
different scales. The observation window was set up as 1.5
seconds, and the validation time was set up as 3 seconds.
The GT time varies from 1 second to 3 seconds. The results
are shown in TABLE II. For three different GT times, the
proposed STACNN-GRU network achieves better accuracy
compared to the baseline by 6.5%, 3.6%, and 3.0%. It should
also be noted that the STACNN-GRU network can run on a
single A6000 GPU at 8.38 frame-per-second (fps), which is
suitable for real-time application.

3) Experiment 3: STACNN-GRU with different sizes of ob-
servation window: As the observation window presents his-
torical information to the network for prediction, intuitively,
the wider observation window results in better performance.
This hypothesis was validated by the third experiment as
shown in TABLE III. The model was trained and validated
with a fixed validation time, i.e., 3 seconds, the observation
window was varied from 1 second to 1.5 seconds, and the GT
time was varied from 2 seconds to 4 seconds. The reasons
why we can not further extend the observation window are
threefold. First, for early-stage prediction, larger observation
windows may also include unrelated information, which could
reduce the model’s accuracy. Second, a wider observation
time corresponds to a larger transformer network and more
feature tokens in the time dimension. Because the attention
network is data-hungry, the current size of the lane-change
dataset can not ensure that the larger network will learn useful
features. Third, the larger attention network increases the
computing load, which makes it challenging for real-world
implementation.

4) Experiment 4: STACNN-GRU with different GT Times
and Validation Times: In the last experiment, the observation
window was fixed to 1 second while the network was trained
with various GT times, ranging from 1 second to 4 seconds.
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TABLE IV
RESULTS OF EXPERIMENT 4: STACNN-GRU WITH DIFFERENT GT TIMES AND VALIDATION TIMES

Validation Time  Validation Time

Validation Time

Validation Time  Validation Time

1s 2s 3s 4s Ss
GT Time Pr: 0.86 Pr: 0.81 Pr: 0.81 Pr: 0.76 Pr: 0.73
Is Re: 0.88 Re: 0.80 Re: 0.80 Re: 0.67 Re: 0.61
F1:0.87 F1:0.80 F1:0.80 F1:0.71 F1:0.66
GT Time Pr: 0.74 Pr: 0.74 Pr: 0.77 Pr: 0.74 Pr: 0.71
2 Re: 0.76 Re: 0.76 Re: 0.82 Re: 0.76 Re: 0.70
F1:0.75 F1:0.74 F1:0.79 F1:0.75 F1:0.70
GT Time Pr: 0.74 Pr: 0.74 Pr: 0.71 Pr: 0.69 Pr: 0.68
3 Re: 0.84 Re: 0.83 Re: 0.76 Re: 0.70 Re: 0.64
F1:0.79 F1:0.78 F1:0.73 F1:0.70 F1:0.66
GT Time Pr: 0.73 Pr: 0.70 Pr: 0.77 Pr: 0.65 Pr: 0.63
4s Re: 0.87 Re: 0.83 Re: 0.79 Re: 0.79 Re: 0.74
) F1:0.80 F1:0.76 F1:0.78 F1:0.70 F1:0.68

The models were validated by different validation times rang-
ing from 1 second to 5 seconds. Note that the GT intention
was not labeled based on the actual drivers’ intention. As
a substitute, we assumed that the explicit expression of the
implicit intention lies in the pre-lane-change behaviors, as
such this experiment was designed to explore how the explicit
expression is distributed along the pre-lane-change data. The
results are shown in TABLE IV. We observed that the model
performs best for validation times ranging from 1 second to
3 seconds, even if we only labeled the closest 1 second to
the lane change as the GT intention. For VT of 4 or 5s,
the model performs best when trained with a GT of 2s.
This mismatch of the best-model corresponding GT time
and validation time indicates that model quality relies on
the density of the lane-change spatio-temporal information
in the pre-lane-change period. Because we labeled the whole
GT time with lane change intention, the higher density of
the lane-change spatio-temporal information translates into
better GT labeling quality. The lane-change-intention-related
maneuvers were more concentrated right before (i.e., last two
seconds) lane changes and more sparse when relatively far
away from lane changes in time.

VI. CONCLUSION AND FUTURE WORK

In this paper, a semi-automatic technique was first imple-
mented to create a lane-change dataset based on the MIT-AVT
full-trip data. The processed dataset includes synchronized
CAN data, 11058-second videos from 3 different views, 548
lane-change events, and 274 non-lane-change events. Second,
a CNN-RNN network was implemented for drivers’ real-
time lane-change intention prediction. The CNN network is
the well-established ResNetl8 with pre-trained parameters,
and the RNN network is a Gated Recurrent Unit. More
importantly, the spatio-temporal information was fused at
multiple scales of the CNN network using the transformers
with a spatio-temporal self-attention mechanism.

The results show that the proposed model can efficiently
learn and predict drivers’ lane-change intention achieving
87% Fl-score within the 1-second validation window and
70% F1-score within the 5-second validation window. Also, it

was demonstrated that the face view plays the most important
role in representing the driver’s lane-change intention. The
ablation study results show that the attention mechanism
helps to improve prediction accuracy. Larger observation
windows led to better model performance, since more spatio-
temporal features can be captured by the transformer blocks,
while increasing the computing load due to the considerably
growing size of the transformer network. Interestingly, we
observed that the spatio-temporal information, representing
the lane-change intention, does not spread evenly along the
pre-lane-change period. The results indicate that the model
achieves the best prediction performance by training it using
the closest 1 second of the pre-lane-change period as the GT
intention. This can be explained by the distribution of pre-
lane-change behaviors, which were more concentrated when
closer in time before the lane changes.

Future work includes more evaluations of the model on
other transformer architectures and state-of-the-art video de-
tection networks such as I3D and SlowFast. Moreover, instead
of using end-to-end networks, it is worth modeling the driver’s
behaviors in a higher resolution. For example, Markov De-
cision Process (MDP) can be used to depict and model the
movement of the driver. To realize this, the annotation of de-
tailed driver behaviors is necessary, such as mirror-checking
behaviors. The actual drivers’ intention data for annotation
as the ground truth is helpful for model training accuracy as
well. Third, it is essential to annotate the lane-change events
with more detailed contextual information, which may have
impacts on the driver’s lane-change behaviors and thus is
useful for behavior anticipation.
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