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Abstract: Driven by new regulations concerning greenhouse gas (GHG) emissions in the transporta-
tion sector, battery-electric trucks (BETs) are considered one of the sustainable freight transportation
solutions. In this paper, a dispatching problem of the BET fleet is formulated as a capacitated elec-
tric vehicle routing problem (VRP) with pick-up and delivery. As the BET dispatching problem is
NP-hard, the performance of existing approaches deteriorates in large instance problems, especially
when the customers have different preferences and constraints. This article proposes a bi-level
strategy that incorporates routing zone partitioning and metaheuristic-based vehicle routing to solve
the large-scale BET dispatching problem, considering the delivery types, limited travel distances,
and cargo payloads. We apply this strategy to a real-world fleet dispatching scenario with around
300 customer positions for pickups and drop-offs. The experimental results demonstrate that the
proposed bi-level strategy can reduce total travel distance and travel time by 24-31%, compared to
the baseline strategy implemented in the real world.

Keywords: sustainable urban freight transportation; meta-heuristic algorithms; truck routing problems

1. Introduction

Heavy-duty on-road trucks account for 70% of all freight movements and 20% of
transportation-sector greenhouse gas (GHG) emissions in the United States [1]. To reduce
GHG emissions, green logistics [2] aim to improve the sustainability of producing and
distributing goods by considering environmental and social factors. Efforts have been
made over the decades to reduce vehicle miles traveled (VMT) and employ innovative tech-
nologies (e.g., transportation electrification). In real-world applications, logistics companies
operate a fleet of vehicles to serve customers while maximizing their net profits. These
vehicles depart from the depot, visit multiple customers for pick-up and/or delivery, and
return to the depot, which can be formulated as a typical vehicle routing problem (VRP).
Over the years, many varieties and extensions of VRP have been proposed to adapt to
real-world constraints and applications. As the emergence of electric commercial vehicles
(ECVs), the electric vehicle routing problem (EVRP) (see, e.g., [3-5]) becomes a hot topic in
recent years. Especially some logistics companies are trying to find a more sustainable way
during day-to-day operations in the urban area to reduce GHG emissions, for example,
by substituting heavy-duty diesel (HDD) trucks for battery electric trucks (BETs) in truck
fleets (e.g., [6,7]).

However, solving the VRP and varieties of VRP is NP-hard. Based on a benchmark
dataset, Solomon investigated vehicle routing and scheduling problems with time window
constraints, by comparing the performance of a variety of heuristic algorithms via an
extensive computational study [8]. Exact metaheuristic approaches (e.g., [9,10]) were
designed to solve VRP. In particular, Rizzoli et al. [10] applied the ant colony optimization
(ACO) algorithm for the basic VRP, and showed that ACO can be used for real-world VRP.
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Polacek et al. [11] proposed an algorithm based on the variable neighborhood search (VNS)
to solve a multi-depot VRP with time windows. This study demonstrated that the approach
was competitive with the tabu search algorithm.

Unlike VRP, EVRP needs to consider limited driving range (i.e., all-electric range or
AER) and the recharging opportunities, which render a more complicated solution space.
Lin et al. [12] conducted a network topology analysis to solve EVRP, which was used
in a problem with 13 customers. This approach cannot provide a solution to an EVRP
of a larger network. In [5], the green vehicle routing problem (G-VRP) was introduced
for alternative fuel vehicles (including electric vehicles), and solved by two heuristic
algorithms, i.e., the Modified Clark and Wright Saving, and the Density-Based Clustering.
In addition, Schneider et al. [4] extended [5] by conducting the Variable Neighborhood
Search/Tabu Search (VNS/TS) hybrid method to solve the electric vehicle routing problem
with time window (EVRP-TW), which considered the possibility of recharging and capacity
constraints on EVs. Recently, Zhao et al. [7] provided an ACO-based dispatching and
scheduling algorithm for a battery-electric truck (BET) fleet, considering AER, en-route
charging opportunity (including different charging rates), pick-up/delivery time window,
and capacity constraints.

However, it is challenging to apply these aforementioned heuristic methods directly to
a large-size vehicle routing problem (e.g., with the size of more than 250 customers) and then
obtain a solution within a reasonable time frame (e.g., less than 2 h). One important issue is
that the performance of heuristic algorithms deteriorates in large-scale problems [13]. To
deal with this problem, Wu et al. [14] combined the centroid-based clustering approach
and the set partitioning method. They developed a framework to solve combinatorial
problems efficiently (e.g., ridesharing). A few recent studies implemented learning-based
strategies to solve the NP-hard combinatorial problems and partition large-scale VRPs
into subproblems (for instance, [15,16]). Furthermore, the application of some algorithms
needs additional consideration. For example, the ACO algorithm requires knowledge of the
number of routes and vehicles before solving the problem. In addition, it is computationally
heavy when tackling a large-size problem, because it needs to calculate a distance matrix
and check the feasibility of each individual route, especially for a real-world case study.

In this paper, we investigate a BET dispatching strategy in which we consider a home-
based charging station with a significant number of pickups and deliveries. To address
limitations of the large-size dispatching problem, we further extend our previous work [7]
and propose a bi-level strategy to handle this challenge, by leveraging the advantages of
unsupervised learning methods and metaheuristic algorithms. At the upper level, a clas-
sic centroid-based unsupervised clustering method, the K-means clustering algorithm [17]
is applied to decouple the entire service region into multiple appropriate dispatching sub-
zones, which can dramatically speed up the computation times and influence the solution
configuration. At the lower level, both ACO and VNS algorithms are adopted to solve the
subzone-based EVRP-TW with capacity constraints, which achieves a good solution quality.
In summary, the major contributions of this research are summarized as follows:

1.  We propose a bi-level strategy which incorporates zone partition and zone-based BET
fleet routing to guarantee scalability.

2. We leverage the advantages of both ACO and VNS to solve the BET fleet dispatching
problem considering the home-based charging opportunities.

3. We use the real-world logistics data, including orders, itineraries, and routes, and the
fleet dispatching plan as a benchmark for comparison, to evaluate the performance of
the proposed strategy.

The remainder of this paper is organized as follows. Section 2 formulates the mathe-
matical problem. Section 3 describes the decomposition and the principle of both ACO and
VNS to address the large-scale BET fleet dispatching problem. Section 4 presents a case
study based on real-world data, and Section 5 concludes the paper with a discussion on
future work.
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2. Problem Formulation

Figure 1 graphically describes our BET dispatching problem, where the dispatching
center receives the order information, including the address, latitude, longitude, service
type (pick-up and delivery), weight, and service time for each customer. The BET fleet
should visit a set of customers on each operation day, considering pick-up and drop-off as
variant delivery types. Each BET has a limited cargo payload, travel distance, and operation
time during each routing plan. In addition, the recharging station may be deployed in
the dispatching center. The dispatching problem involves decisions in two processes:
(a) partitioning the dispatching zone according to the order information to improve the
dispatching efficiency and avoid the problem size being too large; and (b) determining the
best routes and itineraries of the BET fleet to satisfy the constraints.

90

Customers

Order Information Dispatching Center

o <=

1z

Customers

Figure 1. A simple dispatching system used for formulation.

The proposed dispatching problem can be modeled as follows: a complete directed
graph can be defined as G = (N UR, A), where N' = {1, 2,..., N} denotes the set of
customers, and R represents recharging station(s) that may include the deport. The set
of arcs is given by A = {(i,/)|i,j € NUR, i # j}. Each customer i € N is characterized
by an assigned delivery type with demand g; (positive if pick-up, negative if delivery),
as well as a service time s;. In addition, each arc is described by the following properties:
non-negative travel distance di]- and travel time #;;.

A set of homogeneous BETs with a maximal capacity C is positioned at the depot. The
BETs are assumed to be fully charged when departing from the depot O, while node D
denotes the same depot when the BETs return, and every route starts at O and ends at D.
The energy consumption is assumed to be a linear function with the travel distance.

Our objective is to minimize the total travel cost, including the travel distance and
travel time to serve a set of customers. The variables and parameters used in this study are
summarized in Table 1.

Table 1. Variable Definitions.

Variable Description

Set of BETs
Sets of customer vertices
Recharging station(s)
Energy cost rate ($/mile)
Labor cost rate ($/hour)
Recharging rate
Energy consumption rate

S0 =R ﬁ?\i

dij Distance between vertices i to j
tij Travel time between vertices i to j
To Earliest departure time from depot
Tp Latest return time to depot

Tc Maximum recharging time

C BET capacity

Q BET maximum battery capacity
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Table 1. Cont.
Variable Description

qi Demand at vertex (positive if pick-up and negative if drop-off)
S Service time at vertex i
ki Node type. 0 if customer, 1 if charging station.

Uiy Decision variable specifying the remain cargo for BET m on arrival at vertex i

Yim Current state of charge (SOC) for BET m at vertex i

Y; Finish charging SOC for BET m

Xijm Binary decision variable. 0 if the route from i to j is not visited by BET m, 1 otherwise

Thus, the BET dispatching problem can be formulated as a mixed-integer program
as follows:

(adij + btij) Xijm + Y (Yim — Yim)/ g - Xjimb, €))
i€ OUNUR,je DUNUR i #j, meM i€ R,je N,meM
Subject to:
Xijm = 1, Vie (O UN), 2)
j€ DUNUR,i#j, meM
Xijm — Xjim = 0,vje (O UNUR), 3)
i€ OUNUR , i #j,meM
Y xm<LVieR, meM, 4)
j€(DUNUR)
Z Xijm = Z Xjpms V] S (NUR),W! eEM, 5)
i€(OUN'UR) pe(DUNUR)

To < (fij + (1 —ki)si + ki - wﬁzjm < Tp, ©)

Vie OUNUR,je (OUNUR), i #jmeM,
0< Ujm < Uiy — Gi Xijm + C(l — xi]-m), @)

Vie OUNUR,je (DUNUR),i #jmeM,
0<uy <CViecR, meM 8)
0< ((Q—k) yitkiY;i—hdy)x;<Q, 9

Vie OUNUR,j€ (OUNUR), i #jmeM,
Yi = Min{T¢-g,(Q — yim) }, me M,Viec OUR (10)
Xijm =10r0,¥i€ OUNUR,je (OUNUR), i #jmeM, 11)

The objective function of minimizing the total travel cost is defined in (1). Constraint, (2)
enforces the connectivity of customer visits. Constraint (3) establishes flow conservation
by ensuring that the number of incoming arcs to each vertex is equal to the number of
outgoing arcs. Constraint (4) ensures the connectivity of the recharging stations. We assume
that there is a recharging station at the depot, and it is capable of charging BETs at any
time. Constraint (5) defines the conservation law that guarantees the number of incoming
arcs to each node is equal to the number of outgoing arcs. Constraint (6) guarantees time
feasibility that the sum of service time, travel time and recharging time cannot exceed the
assigned total operation time. Constraints (7) and (8) ensure the demand fulfillment of
all customers during BETs’ visits by guaranteeing a non-negative cargo payload at any
vertex, including the depot. Constraint (9) ensures that the BETs never exceed travel range
limitations. Constraint (10) indicates the state of charge (SOC) when the BET m is leaving
the charging station. Finally, x;j,, is a binary variable to indicate the selection of the routes.
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3. Methodology

Figure 2 presents the overall architecture of the proposed system. We first created
a node-to-node database including the travel distance and duration from one customer
to home-base/charging station. Then, we define the dispatching problem as illustrated
in the previous section. And we propose a bi-level hierarchical method for solving the
dispatching problem. At the upper level, we decompose the large problem into multiple
small dispatching zones to narrow the searching space. This may lead to a more efficient
exploration of dispatching strategies. At the lower level, we apply metaheuristic algorithms
to calculate near-optimal solutions.

- Dispatching Zone Design Strategy

Data

Subproblem identifying

Center

b [ [ ]

Data Pre-processing o y
iy Ko Metaheuristics algorithms
fiaossEtions « Ant Colony Optimization (ACO)
Database Creation) algorithm
« Variable Neighborhood Search (VNS)
algorithm

Dispatching Decision

As a promising approach to the BETs dispatching problem, metaheuristics algorithms
can be divided into neighborhood-oriented metaheuristics (e.g., Variable Neighborhood
Search (VNS)) and population metaheuristics (e.g., Ant Colony Optimization (ACO)) and
a recent survey can be found in [18]. In this study, we want to evaluate the performance
of two representative metaheuristic algorithms, i.e., ACO [19] and VNS [20]. The ACO
algorithm implements a randomized constructive greedy heuristic that discovers good
solutions based on the positive feedback of artificial pheromone trails, while the VNS
algorithm solves combinatorial optimization problems based on a systematic change of
neighborhood [21].

Figure 2. Block Diagram of Methodology.

3.1. Data Pre-Processing

Data Pre-processing aims to filter key features (e.g., order information, latitude, longi-
tude, service time, delivery type, and vehicle ID) from the dispatching center. Since the
original dataset contains duplicated data, and collection errors, data preprocessing includes
three steps: (1) data aggregation, (2) data cleaning, and (3) travel distance and time matrices
creation. A cleaned dispatching dataset and corresponding travel distance and travel
time matrices can be obtained. A more detailed description of data and pre-processing is
presented in Section 4.

3.2. Dispatching Zones Partition for Large-Scale Problem

To deal with a large-scale BET fleet dispatching problem in a time-efficient and scalable
manner, we first decompose the large problem into a few smaller sub-problems (sub-zones),
where the goal is to find the best partition. More specifically, a clustering algorithm is
applied to divide the entire service region into different dispatching zones. Based on
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customers’ latitude and longitude information, we implement an unsupervised learning
technique, the K-means clustering, to determine the sub-zones to schedule BET dispatching
before conducting the dispatching algorithms, VNS and ACO, respectively.

Existing studies show that most heuristic algorithms are capable of finding the near-
optimal solutions in a reliable and efficient manner to VRPTW problems with the instance
size in the range of 50-100 [22]. Therefore, in this paper, we partition the service region
into sub-zones, each covering 20-70 pickup and delivery locations. This ensures the
balance between the efficiency and solution quality of our dispatching algorithms. In
the clustering process, a manual tuning process is needed to avoid too large clusters
(e.g., more than 70 positions) and too small clusters (e.g., less than 5 positions). If a sub-
problem cluster contains more than 70 pickup and delivery locations, the performance of
metaheuristic algorithms is cumbersome. Then we continue to decompose this cluster. On
the contrary, if a zone is too small (e.g., a small group of customers is far away from the
other groups), which means the algorithms only search on a small subproblem, we need to
tune the value of K manually to avoid this circumstance. In this case study, we choose K as
8 cluster centers.

3.3. Variable Neighborhood Search (VNS) Algorithm

There are two reasons for us to utilize the VNS algorithm in this study. First, the VNS
algorithm can provide a control group for the ACO algorithm to ensure that the results are
near-optimal. Second, unlike the ACO algorithm, the VNS algorithm does not require the
number of vehicles as the user’s input, and it can provide this value from its output, thus
serving as the initialization parameters to the ACO algorithm for fair comparison.

Algorithm 1 shows a pseudocode for the VNS heuristic algorithm. The VNS works
as follows: when initializing the VNS algorithm, a set of neighborhood structures is
predefined, and all neighborhoods are around any point x € X of the solution space. An
initial feasible solution x is generated by Solomon’s I1 insertion heuristic [23] given as the
current best solution. Then VNS randomly generates a solution x’ in the shaking phase
from the sth neighborhood. Next, the variable neighborhood descent approach in the local
search process is applied to determine the local minimum x”. At this point, if x” improves
the original result x, then x” is accepted as the current best solution and restarts with
neighborhood Nj. Otherwise, if x” fails to challenge the current best solution x, we refuse
the new solution x”” and keep the current best solution x as a feasible input solution to the
next neighborhood structure N, 1.

Algorithm 1. Overview of VNS heuristic algorithm

Input: Dispatching zonen =1, 2, ..., flyax
Output: a set of solution xy,
1. Ny «<k=1,2, ..., kjnax

2: S « generate_inital_solution( )
3 k<« 1
4: x <« S
5: while maximum neighborhood structure ky,qy not satisfied do
6: x! < Shake(x,k)
7 Function VND(x/, kyNDmax):
8 kVND —1
9: while maximum neighborhood structure kyyp not satisfied do
10: x < argmingen, () f(y)
/IFind the best neighborhood in Nj (x')
11: x", k + NeighborhoodChange(x, x',kynp )
12: kVND — kVND +1
13: end while
14: x, k < NeighborhoodChange(x, x" ,kynp)
15: k +— k+1

16: end while
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The shaking phase and the local search intensification phase are equal to the standard
VNS. The neighborhood structures are defined by means of a set of neighborhood operators,
including 2-opt, or-opt [24], 2-opt * [25], relocate, exchange [26], cross-exchange [11], and
a problem-specific operator called stationInRe [4]. The VNS is set to stop when the last
neighborhood is reached.

3.4. Ant Colony Optimization (ACO) Algorithm

Inspired by the cooperative behavior of ant colonies, the ACO is used to find the
optimal path (usually shortest) across a graph [19]. A group of ants read pheromones to
construct solution and update the concentration of pheromone to mark their constructed
routes. As the positive feedback loop contains the highest quantities of pheromone, the
near-optimal solution can be built.

The ACO algorithm has three main steps: initialization, construction of ant solutions,
and update of pheromones. The basic procedures of the ACO heuristic are shown in
Algorithm 2. At the start of the algorithm, we need to predefine how many BETs are
required in the searching step and the number of ants. Then, a set of m ants construct
solutions to the problem being tackled. Each ant starts with an initially empty solution and
uses a probabilistic rule to choose customer i to j as follows:

iy T )G )
Pl )= o
(i, ) n( j)
where 7(i, j) is a function that assigns each feasible solution from node i to j, which is
heuristic information; T(i, j) is the current pheromone value; parameter « and  determine
the relative influence between the pheromone and the heuristic information.

(12)

Algorithm 2. Overview of ACO heuristic algorithm

Input: Dispatching zonen =1, 2, ..., fyax
Output: a set of solution S 4,
Initialization: Pheromone trails (A7) and create a set of ants m

1. i +0
2: while maximum iteration I,,,;, not satisfied do
3: Construct Ant Solution

Cost Qjpersor — Current Best Solution at iteration i
4 if QIteroI > QBL’StSDZ then

5: Qpestsol < Qltersol

6: end if

7: Pheromone concentration (A7) update
8: i+ i+1

9: end while

When the solution for the current iteration is obtained, the pheromone update is
intended to help the ants find a better solution for the next iteration. The pheromone trails
are updated by the strategy as follows:

q
AT = ZQ/cost, (13)
1

T(t+1) = (1—-p)t(t) + AT, (14)

where AT is the amount of pheromone that the best ant deposits; Q is the pheromone
increasing rate; and the cost is the current best solution of the objective function. Pheromone
evaporation p € (0,1] is needed to avoid the searching process converging too fast and
getting trapped into local optima. We keep one elite ant in the ACO during each iteration
to guarantee the algorithm convergence speed.
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4. Case Study: A Real-World BET Dispatching Optimization Problem in
Southern California

This section presents our experiments and results using a real-world dataset to evaluate
the performance of the bi-level strategy. We first introduce the details of this real-world
dataset. Since the real-world data is noisy, Section 4.2 describes the pre-processing effort
and presents how the travel distance and travel time matrices are obtained. Section 4.3
demonstrates computational experiments for the bi-level strategy.

4.1. Data Description

The real-world dataset contains historical movements of the fleet of conventional diesel
trucks and the orders served on June 16th, 2020, covering the regions of Riverside and San
Bernardino County, CA. From the vehicle perspective, each truck has a telemetry data file
in a time-series format that includes timestamp, latitude, longitude, ignition status, speed,
direction, and odometer reading. From the fleet management perspective, there is a summary
data file containing trailer ID, the sum of total orders, the sum of total pieces, the sum of total
pallets, and the sum of total weights. From the customer perspective, another summary data
file is available, containing the details of pick-up and delivery information such as location
address, arrival and departure times, total weight, and the total number of pieces.

4.2. Data Processing

We first aggregated the data from different sources. Although the trucks’ telemetry
data contain timestamps, the time interval between consecutive data points is not fixed,
ranging from 1 min to 15 min. Also, the data points may not align with the arrival and
departure times for delivery or pick-up. Therefore, we regenerated the itinerary of each
truck with dispatching information. Specifically, the itinerary contains order ID, activity
type (depart/return from/to home base, pick-up, or deliver), tractor ID (same as truck
ID), arrival time, departure time, duration (at loading/unloading stops), weight, address,
latitude, longitude, accumulated weight, travel distance (from the previous location to the
current location), and accumulated travel distance. As the initial cargo weight on each
truck is unknown, we assumed that the truck would deliver all the cargo loaded onto it at
the end of the day. As a result, the accumulated weight can be calculated by backtracking
through the orders. Based on the historical itineraries, a delivery order pool and a pick-up
order pool were created.

In the dataset, customers are distributed in a number of cities. The total number of orders
that the trucks collectively served on that day was 850. To ensure efficient execution of the
proposed algorithms, we took steps to clean the data as follows. First, there were some cases
where some trucks served multiple orders at the same location and at the same time. Hence,
we combined these orders and summed up their weights to treat them as one bundled order.
Second, we removed the orders without position information. After these two steps, we
obtained a reduced dataset that includes 333 service locations served by 47 trucks.

The travel distance and travel time from one location to another in the pool are critical
information for the optimization problem. However, since the telemetry data does not have
enough resolution in both space and time, it was difficult to determine the actual routes
taken by the trucks on that day. Therefore, we estimated the travel routes using the Direction
Service Application Programming Interface (DSAPI) provided by OpenRouteService [27].
The inputs for this API include the locations of the start and end points and vehicle type,
while the outputs contain the detailed route in a link-level resolution as well as route
summary statistics (e.g., travel distance and travel time). We compared the travel distance
of the routes estimated by the API with the travel distance of the actual routes taken inferred
by the telemetry data and found that they match well with each other for most of the cases.
It is noted that the travel time estimated from the API is not comparable to that from the
telemetry data, as no traffic information but the speed limit of each link is used.



Sustainability 2023, 15, 925

9of 15

4.3. Performance on BET5 Dispatching Instances

We first applied the K-means clustering algorithm to generate multiple smaller dis-
patching zones as a partition of 333 customers. According to the empirical experiments in
our case study, for small-size subproblems, it is ideal to have less than 20 pick-up/drop-off
locations in each dispatching zone; for large-size subproblems, the number of locations is
more than 20, respectively. The parameter K represents the total number of dispatching
zones. Figure 3 shows the results of the dispatching zone clustering process on 333 cus-
tomer positions. Then, the ACO and VNS were applied to dispatch BETs to serve orders in
each dispatching zone. Table 2 summarizes the input parameters in the case study.

e O
e 1
344 o 2
e 3
4
34.2 %, o g
1., TR :
E of‘# o 6
" 340 o 7
- (o)
fro MU - o
33.8 - IS
.. [ ]
(s
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-118.00-117.75-117.50-117.25~-117.00-116.75-116.50-116 25
Longitude

Figure 3. K-means clustering process for 333 customers positions decomposition. Numbers 0 to 7
represent the ID of each dispatching zone. All the BETs depart and return at the homebase (HB).

Table 2. Summary of Input Parameters.

Type Variable Value
Scenario Number of customers’ positions 333
Assumption Number of charging stations 1 (at depot)
Loading/unloading time [0,2]h
Cargo weight (0, 29,600] Ibs.
Working hour [8 am, 4 pm]
Energy consumption rate 2.14 kWh/mile
BET battery capacity 375 kWh
BET payload capacity 37,000 Ibs.
Labor cost rate $25/hour
Energy cost rate $0.26/mile
Recharging rate 5 kWh/min
ACO Parameters Number of ants 20
Number of iterations 2000
Pheromone weight 0.5
Heuristic information rate 0.1
Evaporation rate 0.05
Pheromone increasing rate 20

To evaluate the feasibility of BET fleet to serve the same customer set, we restricted
the all-electric range of each BET to be 175 miles (the nominal value from the manufacturer)
and assumed a home-based charging at the depot (consistent with the real-world imple-
mentation). Because in the real-world dataset, some sub-zones are far away from the depot,
where BETs cannot complete a round trip without en-route recharging. We performed
further screening and left 278 positions to ensure the BET fleet can be recharged at the
home-based depot without getting stranded on their way. The battery is assumed to be
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fully charged when BET firstly departs from the depot. The maximum charging time is
60 min with 80% charging.

We used the generated BET dispatching instances to analyze the performance of
our VNS and ACO heuristics. The results are shown in Table 3. For each approach, we
calculated the total travel distance, total travel time, and total cost of the best solution for
each of the ten dispatching zones. Furthermore, Table 3 also reports the number of BETs
required to serve the orders in each zone and the computation times of both algorithms.
Overall, the results show that the VNS outperforms the ACO algorithm regarding travel
distance by 18.6%, travel time by 12.5%, and cost by 16.3%. However, the VNS takes a
longer computation time.

Table 3. Comparison of BET Dispatching Results.

Total Travel Total Travel . . Number
ZoneNo.  No. of Orders Distance (miles) Time (h) Total Cost ($) Computation Time (s) of BET
ACO VNS ACO VNS ACO VNS ACO VNS
1 42 234 165 7.9 5.9 329 238 106 1156 3
2 29 134 130 39 39 173 170 162 239 2
3 28 224 217 5.9 5.8 271 265 119 145 2
4 50 473 365 12.1 10.7 566 471 310 1009 5
5 53 417 296 10.5 8.9 523 387 180 1495 4
6 11 203 203 39 3.9 211 211 65 3 2
7 9 125 123 29 2.9 143 141 31 1 1
8 56 400 299 10.7 8.6 489 380 327 2176 4
Sum 279 2210 1798 57.8 50.6 2705 2264 1298 6223 23

Based on the experiment result in Table 3, compared to the VNS, when the number
of orders is more than 20 (i.e., larger size problems), the ACO algorithm finds solutions
more efficiently in terms of computation time, but the total costs are higher. The VNS finds
solutions with much lower costs for those zones, albeit taking much more computation
time. A hypothesis is that if the problem is relatively large and complicated, the ACO
algorithm needs a fine-tuned parameter setting and an appropriate number of iterations
and is prone to get trapped into local optima due to the randomness of its searching process.
Therefore, a sensitivity analysis is conducted in Section 4.4.

4.4. Analyzing the Effect of the ACO Components

Compared with the VNS heuristic algorithm, the ACO needs a fine-tuning process
to guarantee the solution quality since it has more parameters during the search [7]. This
section aims to conduct a sensitivity analysis for the evaporation rate p and the pheromone
increasing rate Q. An appropriate parameter setting significantly affects the performance or
the searching process for the ACO algorithm [28]. In this way, we systematically test with
different parameters as follows: p = [0.01, 0.05, 0.1, 0.2, 0.4] and Q = [20, 25, 30, 40, 50]
on two instances, Zone_2 with 29 customers and Zone_4 with 50 customers. Experimentally,
it should be noted that a higher evaporation rate and a lower increasing rate for the
pheromone can cause a searching problem, in which the pheromone concentration is too
low on each trail, so the artificial ants cannot continue to search the path. Therefore, in
our experiments, we set the upper bound as 0.4 and 50 for the evaporation rate p and
the pheromone increasing rate Q, respectively. For each parameter value, we conducted
3 runs and recorded the best test value to show the performance. Figures 4 and 5 show
the experiment results for two instances, Zone_2 (with 29 customers) and Zone_4 (with
50 customers), respectively, with all the combinations of the parameters given before.
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Figure 4. Effect of the parameter p = [0.01, 0.05, 0.1, 0.2, 0.4] on the solution quality of instance
Zone_2 in total cost (y-axis). The x-axis shows the iterations of the ACO heuristic algorithm.
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Figure 5. Effect of the parameter p = [0.01, 0.05, 0.1, 0.2, 0.4] on the solution quality of instance
Zone_4 in total cost (y-axis). The x-axis shows the iterations of the ACO heuristic algorithm.

Figure 4 shows the test results for Zone_2. As the evaporation rate p increases accord-
ingly, the ACO can converge faster, but the total travel cost increases in this experiment. The
reason is that a higher pheromone evaporation rate leads to the pheromone concentration
decreasing quickly on each trail. As the iteration increases, only a few routes contain higher
pheromone concentration, and others are much lower, so the artificial ants have a lower
probability of exploring other trails. In this instance, the current best solution is generated
by p, Q = [0.05,20].

4.5. Performance on Zone Based VRP

We further examine the performance of our bi-level framework on zone based VRP.
In Table 4, we relaxed the driving range constraint due to the factors affecting the already
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limited driving range of batteries and formulated a zone based VRP to test the performance
of both VNS and ACO. It compared the results of our proposed strategy on the 333 positions
with the historical data. Note that the travel time of the historical dispatching method
in Table 4 was estimated by the same travel time matrix mentioned in Section 4.2 to be
consistent with how the travel time of the other dispatching methods was estimated. By
comparing our experimental results and the historical data in Table 4, the dispatching zone
partition process can improve the efficiency of the heuristic strategy. The ACO algorithm
saved 24.35% on the travel distance compared with the historical travel data. In addition,
our bi-level approach can save approximately 30% on travel distance and time. The results
show that our bi-level strategy would require 13 fewer BETs than the historical record,
reducing the operating cost by 30.9%.

Table 4. Difference Between Historical Data and Bi-level Strategy.

Travel Distance Travel Time
- Cost ($)
f d (Miles) AReal-World f t (Hours) AReal-World
Historical 3967 0.00 103.2 0.00 4642.84
data
Dispatching algorithms

ACO 3001 24.35% 78.2 24.22% 3510
VNS 2740 30.93% 72.7 29.55% 3241

5. Conclusions and Discussion

In this study, we have formulated an optimization problem called capacitated electric
vehicle routing problem with pick-up and delivery to represent the real-world operation of
a regional freight distribution with a fleet of battery electric trucks (BETs), which aims to
minimize the operational cost for the BET fleet. Since the metaheuristic algorithm may fail
to solve large-size instances [7,13], to address this problem, We have developed a bi-level
strategy, including (a) the dispatching zone partition module and (b) metaheuristic-based
vehicle routing module where two representative algorithms—Ant Colony Optimization
(ACO) and Variable Neighborhood Search (VNS) are investigated. At the upper level, the
zone partition strategy can efficiently decouple the dispatching problem into smaller size
of instances, which improve the solution configuration for the metaheuristic algorithms. At
the lower level, the metaheuristic algorithms can solve the fleet dispatching problem.

In addition, we have applied the bi-level strategy to a real-world case to validate the
proposed strategy. The results demonstrate that our bi-level strategy can save approx-
imately 30% on travel distance and time, compared to the baseline strategy. It should
be noted that for small-size of instances, the ACO and VNS are able to find all optimal
dispatching strategies, but for large-size of instances, our computational study shows that
the solution quality of the VNS is better than the ACO. Especially, due to the neighbor-
hood structures, the VNS may not easily fall into local optima, but it costs more searching
time. Our real-world case study shows that the VNS outperforms the ACO by 16.3% in
terms of total costs (both travel distance and time), with compromising in computational
time. Contrary to the VNS, the ACO has more parameters requiring sensitivity analyses
that fine-tune the parameters to improve the quality of solution. Furthermore, sensitivity
analyses indicate the performance of the ACO heuristic algorithm varies under different
parameter settings. We demonstrated how the evaporation rate and the pheromone up-
dated rate influence the solution quality of the ACO. More specifically, we found that a
higher evaporation rate will lead the ACO heuristic to converge faster, but the solution
quality worsens.

There are several directions for enhancing and expanding this work in the future.
A more comprehensive dispatching zone partition strategy considering the proximity
in route distance rather than geographical distance should be considered for practical
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implementation. Also, an ensemble strategy will be considered to enhance the system
performance, which can leverage the advantages of different metaheuristic algorithms. In
practice, we can consider incorporating the pick-up and delivery sequence constraints, e.g.,
prioritizing delivery orders to empty the trailer before pickup orders. It is also noted that
the cargo payload may influence the energy consumption of BETs during operation. This
dynamic feature can be incorporated into the problem formulation (e.g., [6,29]). Moreover,
a safety impact on truck routing design will be considered in our future work, that may
mitigate the potential risks between trucks and other vulnerable road users (e.g., cyclists [30]
and pedestrians [31]). The route or road segment restriction for truck routing (e.g., truck
restricted zone) will be incorporated into the optimization model.
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