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Development of Eco-Friendly Ramp Control for 
Connected and Automated Electric Vehicles 

EXECUTIVE SUMMARY 

Connected and automated vehicle (CAV) technology has been widely developed during the past 
decade. With on-board sensors such as camera, radar, and Lidar, CAVs can sense the 
surrounding environment and be driven autonomously and safely by themselves without 
colliding into other objects on the road. In addition, CAVs are able to communicate with each 
other, and roadside infrastructure via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 
(V2I) communications, respectively, sharing information on the vehicles’ states, signal phase 
and timing (SPaT) information. This enables CAVs to make decisions in a collaborative manner. 

As a typical scenario, ramp control attracts wide attention from many researchers due to the 
concerns of safety and mobility in the merging area. In particular, if the line-of-the-sight is 
blocked (because of grade separation), then neither mainline vehicles nor on-ramp vehicles 
may well adapt their own dynamics to perform smoothed merging maneuvers. This may lead to 
speed fluctuations or even shockwave propagating upstream traffic along the corridor, thus 
potentially increasing the traffic delays and excessive energy consumption. 

In this project, the research team proposed a hierarchical ramp merging system that not only 
allowed microscopic cooperative maneuvers for connected and automated electric vehicles 
(CAEVs) on the ramp to merge into mainline traffic flow, but also had controllability of ramp 
inflow rate, which enabled macroscopic traffic flow control. A centralized optimal control-based 
approach was proposed to both smooth the merging flow and improve the system-wide 
mobility of the network. Linear quadratic trackers in both finite horizon and receding horizon 
forms were developed to solve the optimization problem in terms of path planning and 
sequence determination, and a microscopic electric vehicle (EV) energy consumption model 
was applied to estimate the energy consumption. In addition, microscopic traffic simulation 
was conducted through PTV VISSIM to evaluate the impact of the proposed system on a 
representative highway segment of State Route 91 East (SR-91) in Corona, CA. 

The simulation results confirmed that under the regulated inflow rate, the proposed system 
was able to avoid potential traffic congestion and improve the mobility (in terms of average 
speed) as much as 115%, compared to the conventional ramp metering and the ramp without 
any control approach. Interestingly, for electric vehicles (Connected and Automated Electric 
Vehicles in this study), the improved mobility may not necessarily result in the reduction of 
energy consumption. The “sweet spot” of average speed ranges from 27 mph to 34 mph for the 
EV models in this study. 
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Introduction 

With the ever increase of travel demands, freeways play a significant role in facilitating the 
transportation-related activities. As an indispensable part of the freeway system, on-/off-ramps 
and the associated controls have attracted much attention from worldwide researchers for the 
following reasons: 

• The ramp merging areas have consistently witnessed potential conflicts between on-
ramp vehicles and mainline vehicles;  

• Uncontrolled inflow traffic to the freeway network can lead to congestion; 

• Due to limited vision range and uncoordinated merging behaviors with other vehicles, 
the drivers may experience unnecessary acceleration/deceleration, thus resulting 
excessive energy consumption and pollutant emissions. 

Ramp metering is a widely used ramp merging management method, developed for 
conventional vehicles with human drivers. It utilizes the traffic signals installed on highway on-
ramps to regulate the inflow rate of traffic entering the mainline according to prevailing 
mainline traffic conditions. Ramp metering usually consists of two-phase signal light (red and 
green only) together with a signal controller. For each green phase, one or more vehicles are 
allowed to enter the mainline, and the metering rate depends on the estimated traffic states in 
real time, such as lane occupancy, average speed, and length of on-ramp queue. This 
information is usually collected with fixed-location sensors, e.g., inductive loop detectors and 
cameras. Ramp metering is proved to be a cost-effective operational strategy to improve the 
safety, mobility and sustainability issue. The existing works have mainly fallen into three 
categories, namely rule-based approaches, control-based approaches, and learning-based 
approaches. However, since it inevitably introduces stop-and-go driving maneuver to the ramp 
vehicles, it often costs extra travel time and energy consumption of vehicles. Also, the ramp 
metering system leaves ramp vehicles much smaller room to adjust their speeds to merge into 
the mainline stream (due to mandatory stops at the meter), which potentially increases the 
safety risk. 

On the other hand, connected and automated vehicle (CAV) technology has been studied 
extensively in the last decade. The idea of an automated vehicle based freeway system can be 
traced back to 1970 [1]. With the on-board sensing systems (such as radar, camera, LiDAR, 
ultrasonic, and even thermographic camera), CAVs can perceive the surrounding environment. 
With the communication abilities between CAVs and roadside infrastructures (i.e., vehicle-to-
infrastructure communications) and among CAVs (i.e., vehicle-to-vehicle communications), 
detailed and accurate traffic information can be shared. Thus, higher resolution of system 
states can be estimated to improve the adaptability and system-wide optimality. Furthermore, 
the controllability of the automated vehicles enables the centralized or distributed coordination 
on the maneuvers of a number of vehicles for better performance. This may unlock abundant 
opportunities for more efficient and more delicate traffic management, including the ramp 
control. 
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Utilizing the CAV technique, many researchers have been trying to design a control system to 
cooperate vehicles’ maneuvers in the ramp merging area to improve traffic efficiency. An 
extensive literature review is presented in the next Chapter. However, few ramp control 
approaches take the energy consumption into consideration when formulating the problem. 
Also, although the previous research proposed many sophisticated control methods, they failed 
to consider the entrance sequence of both mainline and ramp vehicles into the merging zone—
the first-come-first-serve strategy and simplified estimated time of arrival (ETA) scheme are 
commonly used [2]. In addition, the cooperation of vehicles at merging area can only improve 
the local performance of the system. Unregulated inflow rate of the ramp vehicles can still lead 
to potential oversaturation the highway network, thus increasing the risk of upstream 
congestion and traffic accident around the merging area. To the authors’ best knowledge, very 
few studies have focused on the energy efficient merging, not to mention the application of 
electric vehicle or more specifically connected and automated electric vehicles (CAEVs). It turns 
out to be a trade-off between mobility and environmental sustainability. Lastly, previous 
studies barely conducted microscopic traffic simulation. Their seemly sound results from 
numerical analysis under limited scope (e.g., a string of vehicles) may not represent long term 
impact on the dynamic traffic. 

To address the aforementioned issue, we proposed a hierarchical system for corridor-wide 
ramp control, which solves the problem in three steps: a) corridor-wise ramp inflow rate 
determination; b) energy consumption-based sequence optimization; and c) individual vehicle 
trajectory optimization. More specifically, at the corridor level of the system, a cooperative 
protocol is introduced to calculate system-wide optimal inflow rate for each on-ramp, given the 
estimate of macroscopic traffic condition. The lower level controller coordinates the maneuvers 
of CAEVs locally at the ramp area and regulates the inflow rate accordingly. The proposed ramp 
merging control system first decides the set of vehicles to be controlled dynamically. Then the 
optimal merging sequence (involving both mainline and ramp vehicles) is identified, using a 
finite-horizon linear quadratic (LQ) tracker which predicts the optimal speed profiles in terms of 
energy consumption of the involved vehicles (both on-ramp and mainline) under specific 
conditions. With the identified optimal sequence, the vehicles are then controlled by a 
receding-horizon LQ tracker with the same parameters as the ones used in the prediction step. 
Finally, the next ramp leader vehicle (the first vehicle following the previous set of vehicles) is 
controlled to fit the suggested ramp inflow rate. It is noted that the energy consumption was 
estimated through a microscopic electric vehicle energy consumption model developed in our 
previous study [3]. 
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Literature Review 

In this chapter, we review a few aspects that are related to the development of proposed ramp 
control for Connected and Automated Electric Vehicles (CAEVs), including ramp metering 
strategy, cooperation among Connected and Automated Vehicles (CAVs), traffic state 
estimation, as well as driving behavior modeling. 

Ramp Metering 

A ramp meter is a traffic signal on a freeway on-ramp area that is used to regulate the inflow 
rate of vehicles onto the freeway. Although there are some review papers about ramp metering 
algorithms in the past few decades, such as [4]–[6], latest progress in this area especially 
related to machine learning technique was not included. In this section, we divide the up-to-
date ramp metering algorithms into three categories: 1) rule-based; 2) control-based; and 3) 
learning-based, and review them, respectively. 

Rule-based Approaches 

A typical rule-based approach contains a hierarchy logic to adjust the ramp rate internally and 
coordinately. In general, the rule-based algorithms are easy to define, modify, and are relatively 
computational efficient. They simplify the nonlinear feature of the traffic, which is complex to 
be modeled accurately without hard assumptions.  

A widely used rule-based method to achieve system-wide coordination is competitive 
approach, which usually contains two competitive controllers running in parallel, where the 
more restrictive metering rate would be chosen. Additional adjustment could be introduced to 
address other constrains like queue effects. Bottleneck Algorithm [7] used upstream occupancy 
and bottleneck data as system inputs, and the algorithm contains coordinated bottleneck 
controllers and local controllers. Similar to the Bottleneck Algorithm, two-module structure 
were proposed in the System-Wide Adaptive Ramp Metering (SWARM) Algorithm [8] as well. 
SWARM made decision based on estimated lane density using Kalman filter and linear 
regression. The local controller (called SWARM2) calculated metering rates by preserving 
headway which was converted from estimated local density, and the coordinated controller 
(called SWARM1) calculated metering rates to adjust the current density to the desired value. 

ZONE [9] Algorithm was another well-known rule-based approach which segmented freeway 
into zones, and it used Conservation Law to model the volume change of the traffic. By 
integrating the real-time measurement on upstream mainline volume with historical data, the 
algorithm chose a predefined metering rate accordingly. Fuzzy Logic [10], [11] algorithm was 
developed in 1998, which converted empirical knowledge into finite fuzzy rules. The proper 
choice of rules might lead to a robust system, but it could be overwhelming to identify 
appropriate rules for a system-wide ramp metering. Advanced Real-time Metering System 
(ARMS) [12] was made up of free-flow control, congestion prediction, and congestion 
reduction. The algorithm maximized the throughput and tried to reduce the risk of congestion, 
and Origin-Destination (O-D) information was used to distribute the calculated ramp volume to 
each ramp. Dynamic Ramp Metering [13] is a hierarchical coordinated control of ramps that 
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contains state estimation, OD prediction, local control and area-wide control to minimize the 
total system travel time. 

Control-based Approaches 

Control-based approaches introduce automatic control techniques such as feedback control 
into the ramp metering system. Unlike the rule-based approaches whose strategies may be 
sophisticated, control-based ones are usually succinct, robust and efficient. However, the 
nonlinearity of the traffic dynamics poses some challenges for these approaches.  

ALINEA was first proposed by Papageorgiou et al. [14] in 1991. By introducing the feedback into 
the control design, the algorithm is robust to the disturbance. Papageorgiou et al. also provided 
a guideline for the design of ALINEA ramp metering system [15]. The algorithm uses 
downstream occupancy as system inputs, controls the metering rates in response to the change 
of occupancy, and regulates them to the desired level. Although ALINEA is a local ramp 
metering algorithm, it draws much attention due to its simplicity, stability, and efficiency. 
Therefore, a large number of variations of ALINEA have been proposed to adapt to more 
complicated scenarios (e.g., METALINE, FL-ALINEA, UP-ALINEA, XALINEA/Q, PI-ALINEA) [5] [16]–
[19] or to extend for achieving system-wide benefits (HERO) [20]. 

Linear-quadratic (LQ) feedback control algorithms are another type of control-based methods 
proposed by Isaksen and Payne [21] and Golstein and Kumar [22], which optimize the system 
performance such as throughput (vehicle miles per hour). In order to minimize total delay of 
the freeway network, Model Predictive control (MPC) approaches were applied by some 
researchers. Hegyi et al. [23] proposed a MPC scheme in a rolling horizon framework to 
coordinate the variable speed limits and ramp metering. To coordinate the traffic flows in an 
urban network with both freeways and arterial, Haddad et al. [24] developed an MPC-based 
algorithm for perimeter control including ramp metering strategies. Stratified Ramp Metering 
Algorithm was proposed by Geroliminis et al. [25], where a more accurate density estimation 
algorithm was developed. The metering rates were calculated to delay the onset of the 
breakdown and to accelerate system recovery. The algorithm could be regarded as an extended 
version of Stratified Zone Algorithm (SZM) [26] which aims to maximize the network 
throughput. The MPC scheme was also used to solve the optimization problem. 

Learning-based Approaches 

With the rapid advance in machine learning techniques such as artificial neural network (ANN) 
and reinforcement learning, more and more learning-based approaches for ramp metering 
emerge recently. Because of the nonlinear feature of traffic dynamics, learning-based 
approaches seem to be a shortcut to achieve better performance. 

Zhang et al. proposed a local freeway ramp metering using ANN [27]. The controllers calculate 
the proportional-integral (PI) feedback gain using multi-layer feed-forward (MLF) neural 
network which can be tuned by both historical data and on-line streaming data. Coordinated 
Ramp metering algorithm using ANN was firstly proposed by Wei and Wu [28]. The coordinated 
metering rate was trained by a traffic simulation model and expert system. 
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The recent breakthroughs of Reinforcement Learning (RL) provide another promising direction 
for ramp metering. Numerous RL-based algorithms have sprung up in the past five years. A local 
ramp metering algorithm was developed by Lu and Huang [29]. Fares et al., and Lu et al. 
proposed a coordinated ramp metering algorithm using Q-Learning technique [30], [31]. Belletti 
et al. proposed an expert level ramp metering control based on multi-task deep reinforcement 
learning [32], and Schmidt-Dumont et al. combined ramp metering with variable speed limits 
based on decentralized reinforcement learning [33]. 

Coordination of CAVs 

In this section, we mainly review the literature that were focused on the low-level system of the 
coordinated ramp control, which is the coordination of CAVs in terms of their motion control 
algorithms. Some previous work was reviewed by Rios-Torres et al. and Scarinci et al. [34], [35]. 
However, in this section, we strategically categorize all related literature into two types: 
centralized approaches and distributed approaches. Additionally, we include more recent 
papers that were not reviewed by the previous surveys. 

Centralized Approaches 

In this section, we define a CAV coordination approach as centralized if the tasks and control 
commands of the system are globally conducted by the roadside infrastructure and/or the 
transportation management center (TMC) for all CAVs. Some of the major reasons that such 
coordination is conducted in a centralized manner are that, each CAV in the system might not 
have global information of the system, nor can they conduct computations locally that consume 
large computational power and long computational time. 

In some centralized approaches, tasks and control commands were executed by different layers 
of the centralized controller. A two-layer CAV coordination system at ramp was proposed by 
Schimidt et el. in 1983, which was based on non-linear system dynamics behavior [36]. In their 
system, the higher layer is in charge of the sequence control, while the lower layer is in charge 
of the motion control of vehicles. Ran et al. proposed a similar centralized multi-layer 
automated ramp system, and also built a microscopic simulation model to validate its 
characteristics, as well as the designing requirements of the minimum ramp length [37]. 

Other than aforementioned approaches, coordination of CAVs at ramp can also be modeled as 
an optimization problem to be solved by the centralized controller, with the aim of minimizing 
travel time or fuel consumption. Awal et al. proposed an optimization problem with the 
objective of reducing merging time at ramps and thus reducing merging bottlenecks [38]. Raravi 
et al. formulated an optimization problem which aims at minimizing the Driving-Time-To-
Intersection (DTTI) of vehicles, subject to certain constraints for ensuring safety [39]. Rios-
Torres et al. presented an optimization framework and an analytical closed-form solution that 
allowed online coordination of CAVs at on-ramp merging zones [2]. Xie et al. formulated this 
case as a nonlinear optimization problem, and conducted a simulation evaluation with MATLAB 
and Car2X module in VISSIM [40]. 



 

 6 

Distributed Approaches 

Different from centralized approaches that rely on the roadside infrastructure and/or the TMC 
with infrastructure-to-vehicle (I2V) communication, distributed approaches of CAV coordination 
at ramp control conduct coordination decisions locally among different CAVs through vehicle-
to-vehicle (V2V) communication. Compared to the centralized approaches, the distributed 
approaches bring several benefits, including reducing communication requirement and 
improving scalability. 

The concept of virtual vehicle coordination at ramps was originated from Uno et al. [41]. The 
proposed approach maps a virtual vehicle onto the highway main line before the actual 
merging happens, allowing vehicles to perform safer and smoother merging maneuver. Lu et al. 
applied a similar idea in their proposed systems, where they first formulated the merging 
problems differently with respect to two different geometric layouts of the road (i.e., either 
with or without a parallel lane), and then proposed a speed based closed-loop adaptive control 
method to control the longitudinal speed of merging CAVs [42]. 

Besides the virtual vehicle ideas, other distributed approaches were also proposed to control 
the longitudinal motion of CAVs at ramps. Dao et al. proposed a distributed control protocol to 
assign vehicles into vehicle strings in the merging scenario [43]. Zhou et al. developed a vehicle 
trajectory planning method for CAV coordination at ramp, formulating the planning tasks of the 
ramp vehicle and the mainline vehicle as two related distributed optimal problems [44]. Wang 
et al. proposed a distributed consensus-based CAV coordination system [45]. Furthermore, 
agent-based modeling and simulation of the proposed CAV coordination system was conducted 
in game engine Unity, and it was compared to human-in-the-loop simulation to evaluate its 
benefits in terms of mobility and sustainability [46]. 

Traffic State Estimation 

Accurate measurement and estimation of prevailing traffic conditions are the foundation of 
effective ramp control system, especially from the perspective of corridor-level coordination. 
Since it is difficult and expensive to obtain complete information on the traffic (e.g., 100% 
penetration rate of connected vehicles), estimation of traffic states, such as flow, density, and 
speed, from partially observed traffic data plays an important role. Seo et al. performed a 
comprehensive survey about traffic state estimation which provides a guideline into this field 
[47]. 

The categories listed below are on the basis of their suggestion. At the macroscopic scale, road 
networks are divided into several segments without further merging or diverging, which are 
called links. Inside each link, the traffic states can be considered to be homogeneous. Usually, 
flow (veh/hr), density (veh/km), and speed (km/hr) are three key variables used for traffic flow 
management. There might be other equivalent variables. For example, some ramp metering 
algorithms use occupancy as system input, which is quite comparable to density with the 
assumption or estimation of vehicle length. Raw data available for estimation can be 
categorized as: stationary and mobile. The stationary data is collected by fixed location sensors 
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such as inductive loop detectors, micro-wave radars on roadside, and surveillance cameras. The 
mobile data is collected by moving vehicles equipped with sensors such as GPS, on-board radar, 
and camera. The emergence of CAVs on roads can provide a significant amount of mobile 
sensor data. 

Traffic flow model is widely used for traffic state estimation. The models are usually based on 
physical and empirical relations. Borrowing the idea of hydrodynamic theory, fundamental 
diagram depicts the relationship between density and speed, and/or density and flow [48–49]. 
Another dynamic representation model with the hydrodynamic theory is cell transmission 
model (CTM) [50], which utilizes the discrete analog of the differential equations arising from a 
special case of the hydrodynamic model of traffic flow. Because of the conservation law for the 
traffic hydrodynamic, the aggregated behavior of traffic is depicted by partial differential 
equations. Lighthill-Whitham-Richard (LWR) model is the most commonly used first-order 
model [51–52], and there are many higher-order models such as Payne-Whitham (PW) model 
[53–54]. 

Model-based Approaches 

Model-based approaches are widely used in the field of traffic state estimation, where 
aforementioned traffic flow models are applied. The parameters of the models are usually 
calibrated via historical data from the field. After the calibration, target data is fed into the 
model to estimate the traffic states. Coifman proposed a method of estimating microscopic 
vehicle information (i.e., travel times and trajectories) using LWR model and loop detector data 
[55]. Wang and Papageorgiou estimated macroscopic traffic via Extended Kalman Filter (EKF) 
[56]. However, these approaches may fail if inappropriate models are adopted. Furthermore, as 
the parameters are calibrated by specific data sets, the model-based approaches may not be so 
adaptive to the drastic changes of traffic conditions. 

Learning-based Approaches 

Different from model-based approaches, no empirical traffic flow models are used in learning-
based approaches. Learning-based models are trained through statistical methodologies or 
machine learning techniques given a large amount of historical data. A typical learning-based 
estimation approach was proposed by Tak et al. [57], in which k-nearest neighbors (KNN) 
algorithm was applied. Because of the challenge to well interpret the features of learning 
scheme, it is difficult to analytically comprehend how the entire system works even though the 
results may be very attractive. Additionally, similar to the model-based approaches, the 
dependency of trained data set makes the system not flexible enough to transfer to other 
untrained scenarios. 

Streaming-data-driven Approaches 

Without using neither empirical models nor historical data, streaming-date-driven approaches 
only rely on real-time data and “weak” assumptions. Therefore, it is more robust to different 
traffic conditions. The “weak” assumption such as Conservation Law is generally reasonable, 
considering the physical constraints. A recent research was performed by Florin et al. [58], who 
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presented mobile observer method with aggregated information of number of overtaking 
maneuver of vehicles. The increasing number of CAVs and connected vehicles on freeways can 
provide a large amount of streaming data for traffic state estimation, which makes it possible to 
consider mixed traffic scenarios. Bekiaris-Liberis el al. proposed a mixed traffic state estimation 
method with streaming-data-driven approach utilizing only average speed measurements 
reported by connected vehicles and a minimum number (sufficient to guarantee observability) 
of spot-sensor-based total flow measurements [59]. 

Driving Behavior 

Although we assume full penetration rate of CAVs in this study1, the review of human driving 
behavior may provide useful insight for the potential extension to mixed traffic scenarios. 

Modeling and predicting the driving behavior of conventional human-driven vehicles are 
essential for designing the motion behavior of CAVs in mixed traffic conditions. As the 
foundation of microscopic traffic models, car-following (CF) logic describes the longitudinal 
interactions between vehicles assuming there is no lane changing or overtaking. Over the past 
decades, a considerable number of car-following models have been proposed and developed 
[60–61]. For instance, Gipps model [62], Krauss model [63] and intelligent driver model (IDM) 
[64] were well-developed to address the speed adjustment according to the principle of 
collision avoidance between vehicles. A comprehensive comparative study of car-following 
models used in the state-of-the-art microscopic traffic simulators was conducted in [65]. More 
recently, to improve the traffic flow stability, an anticipation optimal velocity model (AOVM) 
was proposed by Peng et al. considering the anticipation effect of optimal velocity [66]. Given 
that human factors plays an essential role in driving behaviors especially under complex traffic 
conditions, notable efforts have been made to integrate human factors into the conventional 
CF model in order to describe more realistic driving behavior [61]. For example, an adaptive 
neural-fuzzy inference system (ANFIS) was proposed in [67] that integrated human expert 
knowledge and neural network to adapt the vehicle speed for car-following and collision 
prevention. Instead of assuming constant reaction time, Khodayari et al. proposed an artificial 
neural network (ANN) car-following model to estimate the following vehicle’s acceleration 
based on variable reaction delay input [68]. In [69], a number of numerical tests showed that 
ANNs provide a good approximation of car following dynamics. Comparative studies and 
evaluation between major car-following models under mixed traffic conditions can be found in 
[70]. 

To describe the driving behavior in various traffic situations, some new methods have been 
proposed that use mathematical models and neural networks like Bayesian filtering, Recurrent 
Neural Network to predict a driver’s intended actions across traffic situations [71–72]. Artificial 
neural network (ANN) and radial basis function neural network (RBF-NN) showed great benefits 
to predict the vehicle second-by-second trajectory in congested traffic condition in terms of 

 

1 Out of the control zone (see Figure 1), the vehicles’ dynamics are governed by the default car-following model of 
the simulation software in this study. 



 

 9 

accuracy and efficiency [73–74]. To investigate the cause of stop-and-go pattern and estimate 
the vehicle behavior in traffic, Agamennoni et al. proposed a recursive Bayesian filtering 
approach for that purpose [71]. The problem of multi-agent inference was tackled by 
decoupling the joint inference to log-linear combinations of individual dependencies. Toledo et 
al. [75] further developed an integrated driving behavior model that combine lane changing 
behavior and acceleration based on target lane model and target gap model as short-term goal 
and plan. 

Some cutting-edge research involved studying the interaction between human driven vehicle 
and CAVs. To investigate the impact of AVs on traffic flow, the authors in [76] assumed both 
AVs and human-driven vehicles follow the well-known intelligent driver model (IDM) but with 
different parameters. Simulation study of a single AV and several human-driven vehicles 
interaction showed with stabilization can be achieved via a single autonomous vehicle driving 
around the equilibrium speed [77]. In this work, a second-order car following model (i.e., 
optimal-velocity-follow-the leader model) was applied to describe the human-driven vehicles’ 
behaviors as well as AV. With estimating vehicle behaviors and anticipate their future 
trajectories, more effective coordination between vehicles could be achieved in mixed traffic 
condition. 

Problem Formulation and System Architecture 

Problem Formulation 

Figure 1 illustrates a typical highway-ramp merging area. However, different from the traditional 
ramp metering scenario which has a traffic light located at the end of the ramp, we consider the 
scenario with the following assumptions in this paper: 

• All vehicles are CAEVs whose information (e.g., position, speed, and acceleration) are 
perfect and are shared via V2I or V2V communications. And their speeds can be fully 
controlled by the acceleration/deceleration signals sent from a centralized processor. 

• There is no communication delay or package loss in either V2V or V2I communications. 

• Once the affected mainline vehicles are selected by the merging algorithm, they will not 
change lanes to preserve the number of controlled vehicles, or overpass other mainline 
vehicles to disturb the entrance sequence into merging area. 

With the appropriate control, it is expected that the involved CAEVs may avoid unnecessary 
stops (as mandatory by the ramp metering) before the completion of merging maneuvers, 
while the inflow rate on ramp or even the time headway between on-ramp vehicles can be well 
regulated. 

Since we only control the longitudinal dynamics of the vehicles, we set up a one-dimensional 
coordinate system and map the positions of vehicles on both mainline and ramp to the system. 

The dynamics of 𝑛 vehicles in the proposed ramp merging system can be given by: 

 𝑝𝑖̇ = 𝜈𝑖 , 𝜈𝑖̇ = 𝑢𝑖 (1) 
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where 𝑖(∈ [1,2,… , 𝑛]) is the vehicle index; 𝑝 and 𝜈 represent the position and speed of the 
vehicle, respectively; and 𝑢 denotes the acceleration of the vehicle, which acts as the input of 
the proposed system. If we define the overall system state as 

𝑥 =

(

 
 
 
 

𝑝1
𝑝2
…
𝑣1
𝑣2
…
𝑣𝑛)

 
 
 
 

, and the observation as 𝑦 =

(

 
 
 
 
 

𝑝1 − 𝑝2
𝑝2 − 𝑝3
…

𝑝𝑛−1 − 𝑝𝑛
𝜈1
𝜈2
…
𝑣𝑛 )

 
 
 
 
 

 

the system can be written as the following linear form: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

 𝑦 = 𝐶𝑥 (2) 

where 𝐴 is a 2𝑛 × 2𝑛 system matrix of constant coefficients that describes the state transfer; 𝐵 
is a 2𝑛 × 𝑛 control matrix of the coefficients that weigh the inputs; and 𝐶 is a (2𝑛 − 1) × 2𝑛 
output matrix. 

 

Figure 1. Illustration of different zones of the proposed optimal control-based ramp merging 
system. 

Then, we formulate the optimization problem in the following quadratic form. The cost function 
is defined as the sum of the deviations of the measurements and control effort. 

min𝐽 =
1

2
∑{(𝑦𝑘 − 𝑟𝑘)

𝑇𝑄(𝑦𝑘 − 𝑟𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘}

𝑁−1

𝑘=0

+
1

2
(𝑦𝑁 − 𝑟𝑁)

𝑇𝑄(𝑦𝑁 − 𝑟𝑁) 

 𝑠. 𝑡. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 𝑦𝑘 = 𝐶𝑥𝑘 (3) 

𝐴𝑐𝑐min ≤ 𝑢𝑘 ≤ 𝐴𝑐𝑐max 

((𝑝𝑖)𝑘 − (𝑝𝑖+1)𝑘)≥ 𝐺𝑎𝑝min 
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where 𝑟𝑖 is the gap and speed reference to be tracked; 𝑄 and 𝑅 matrices define the weights of 
the objective function to be tuned, respectively, for the system outputs and inputs. 
[𝐴𝑐𝑐min, 𝐴𝑐𝑐max] is a feasible input range that the vehicles can achieve. 𝐺𝑎𝑝min is the hard 
safety constraint to avoid collision. In the simulation, 𝐴𝑐𝑐max equals to 2.5𝑚/𝑠2; 𝐴𝑐𝑐min equals 
to -3𝑚/𝑠2; and 𝐺𝑎𝑝min equals to 2s headway times initial speed 𝜈𝑖0. It is noted that herein we 
simplify the safety constraint by borrowing the concept for legacy vehicles. CAEVs may require 
more complex collision-free constraints (e.g., string stability issue for a platoon of CAEVs) or 
even shorter 𝐺𝑎𝑝min than legacy vehicles (from an individual CAEV perspective) due to their 
quicker reaction times and better control capability. If vehicle 𝑖 and vehicle 𝑖 + 1 are on the 
same lane (i.e., either both on the ramp or both on the mainline), this constraint should be held 
strictly. If vehicle 𝑖 and vehicle 𝑖 + 1 are on different lanes (e.g., one on the mainline while the 
other on the ramp), this constraint need to be held when they arrive at (or very close to) the 
merging area. 

Definition of Control Zone and Buffer Zone 

To solve this problem, we first specify the roadway segment with two types of zones: control 
zone and buffer zone for the on-ramp and mainline, respectively, as shown in Figure 1. In the 
control zones of both mainline and on-ramp, a centralized processor is employed to receive and 
process the incoming information from CAEVs and send the control signals back to CAEVs to 
achieve system-wide energy efficiency. Buffer zones (in orange) are located on the upstream 
portion of the control zones, and are designed to continuously monitor the incoming vehicles 
and collect information to support subsequent control decision. As vehicle streams keep 
flowing into the network, control decision cycles (in time) are segmented and the involved 
CAEVs (with the consideration of regulated inflow rate) of each cycle are determined once the 
first unregulated vehicle hits the downstream boundary of the on-ramp buffer zone. By 
controlling the speed of each involved CAEV, the inter-vehicle gaps and traveling speed can be 
well regulated to ensure the safety at the merging zone. It is noted that if the number of 
vehicles within the on-ramp buffer zone exceeds the inflow rate to be regulated during the 
current cycle, then the partial of stream will be controlled and deferred to enter the merging 
area in the next cycle. 

Figure 2 shows an example of the trajectories of vehicles in the system to illustrate how 
vehicles are controlled. The orange curves illustrate the vehicles' trajectories controlled by the 
optimal algorithm; The blue dash curves depict the predicted trajectories of the leading vehicles 
for the next control decision cycle without regulating the on-ramp inflow rates; The solid blue 
curves present the controlled trajectories of these leading vehicles with the compliance of the 
inflow rates; The yellow curves represent the trajectories of vehicles following the leading 
vehicles whose trajectories have been regulated for the sake of inflow rate (i.e., solid blue 
curves). 

System Architecture 

A typical freeway system contains multiple on-ramps and off-ramps. As mentioned in previous 
chapters, by leveraging CAV technology, we can better estimate and predict the traffic states in 
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real time, and develop a ramp control system that can: 1) improve the operational efficiency of 
entire freeway by cooperatively regulating the inflow rates of all ramps; 2) mitigate safety 
concerns at the ramp merging areas by coordinating the movements of vehicles on both 
mainline and ramp; and 3) reduce the excessive vehicular energy consumption and emissions 
by smoothing the longitudinal maneuvers of CAVs. If conventional human-driven vehicles are 
involved, design of the trajectories for CAVs should predict the behavior of conventional 
vehicles based on certain models such as car-following and merge gap acceptance. Figure 3 
illustrates a generalized system architecture of the cooperative ramp control system for mixed 
traffic. As shown in the figure, the hierarchical system can be divided into a real-time data 
processor and a 3-level structure. 

 

Figure 2. Illustration of the vehicle’s trajectories on ramp and the mainline. 



 

 13 

1) At the corridor-level, the ramp metering algorithm calculates system-wide optimal inflow 
rate for each on-ramp, given the estimate of macroscopic traffic states. The resultant 
inflow rate serves as the constraint for boundary control at lower level (i.e., ramp-level). 
It should be pointed out this strategy is applicable to homogeneous flow (either all legacy 
vehicles or all CAVs as considered in this study). For mixed traffic, the conventional ramp 
metering algorithms need to be further extended to consider CAVs in the context, where 
a hybrid ramp control strategy should be developed.  

2) The ramp-level module coordinates the maneuvers of CAVs and human-driven vehicles 
at the merging area and regulates the ramp inflow rate based on the output from the 
corridor-level control. Desired CAVs trajectories are calculated by a centralized 
controller. To complete this task, the controller should keep tracking the human-driven 
vehicles and predicting their behaviors, and the trajectories of CAVs should be adjusted 
accordingly. 

3) Once the trajectory is calculated for the involved CAV, a lower-level controller (at the 
vehicle dynamics level) is designed for trajectory tracking. Please note that the 
powertrain control of the CAVs is out of the scope of this study. 
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Figure 3. Illustration of the generalized system architecture. 

Regarding the major blocks in Figure 3, extensive literature review has been performed and 
summarized in Chapter 2. Also, it should be pointed out that at the corridor-level control, we 
applied the Stratified Ramp Metering (SRM) Algorithm directly and determined the appropriate 
ramp metering rates. We put significant efforts into ramp-level and vehicle-level control. Figure 
4 further elaborates the detailed flowchart for the ramp level and vehicle level control, with the 
external input suggested ramp inflow rate (i.e., determined by SRM). 
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Figure 4. Flowchart of the proposed ramp-level and vehicle-level control. 

1) Ramp level: data collection and vehicle merging sequence optimization. In the data 
collection module, vehicles' information (such as position, speed, and lane index) is 
collected once they enter the buffer zones. Usually, the ramp buffer zone is determined 
based on its physical length, while the length of the mainline buffer zone may vary with 
prevailing traffic conditions. Because the controller is designed to regulate the vehicles to 
form a compact string, it is important to know the entrance sequence of the vehicles into 
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the merging zone. Intuitively, the sequence would have impacts on the string-wise 
energy consumption. Instead of using a heuristic sequencing protocol, such as first-come-
first-serve, we developed an optimal sequence determination module to identify the 
most energy efficient sequence. The module exams all possible sequences, applied the 
finite-horizon linear quadratic (LQ) tracker to predicting the controlled speed profile of 
each involved vehicle, estimated the associated energy consumption, and selected the 
least energy consumption sequence for the vehicle level control. 

2) Vehicle level: motion control of individual vehicles. For the involved vehicles, the 
longitudinal motion controller is designed to be a receding horizon LQ tracker. To match 
the predicted energy consumption in the optimal sequence determination step, we use 
the same controller parameters as in the associated finite-horizon LQ tracker. Details of 
controller design will be presented in the Methodology chapter.  

Methodology 

In this chapter, we will discuss the detailed methodology for each key step in the flow chart of 
the proposed ramp control system (see Figure 4), including metering rate estimation, involved 
vehicle identification, optimal sequence determination, and vehicle motion control. 

Metering Rate Estimation 

At the corridor-level, the control algorithm calculates the system-wide optimal inflow rate for 
the on-ramp, given the measurement of macroscopic traffic states (such as flow, occupancy, 
and speed). The resultant inflow rate serves as the constraint for boundary control at the lower 
level (i.e., ramp-level). To implement such function, existing corridor-wide ramp metering 
algorithms are able to take the position.  

The corridor-wide ramp metering algorithms, also known as coordinated ramp metering 
algorithm, take into account sections of the freeway including multiple on-ramp and off-ramp 
as unitary dynamic systems, instead of calculating each local on-ramp inflow rate 
independently. Therefore, more macroscopic control of the traffic can be achieved. 

In this study, the corridor-level control algorithm is designed via the idea of the Next 
Generation Stratified Ramp Metering Algorithm proposed by Geroliminis et al [25]. The basic 
objectives of the algorithm are to balance the ramp waiting time and ramp inflow rate, namely, 
the demand and queue lengths at on-ramps and the level of congestion on the mainline, to 
delay the operation of the breakdown and to accelerate system recovery. 

Instead of the traditional layer-based algorithm, which fixed the control zone, the proposed 
approach dynamically determines the zones in real time based on the current traffic condition. 
The zone is defined as a segment of the freeway consisting of multiple consecutive sections, 
which is a sub-segment of the freeway between two consecutive mainline detector locations (in 
traditional freeway system). For each section, the congestion threat index, marked as 0, 1, and 
2, will be calculated to identify the severity of each potential bottleneck. Level 2 congestion 
threat index of a section indicates a location that is already congested, level 0 of a section 
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indicates a location that has minimal threat to be congested, and level 1 is a state in between. 
The detailed approach to calculate the indices refers to [25]. After that, the controlled ramp can 
be identified via the indices' information. Each zone has only one controlled ramp located at 
the most downstream end. Figure 5 depicts the flow chart to identify the controlled ramp.  

 
where i in current section ID; k is number of consecutive downstream section; 𝑃𝑖 is the congestion threat index of 
the current section; M(i, i-k) is the net inflow between the two locations i and i-k, defined as the sum of on-ramp 
volumes minus the sum of off-ramp volumes plus the capacity flow difference for all ramps between the two 
locations. 

Figure 5. Flowchart of next generation stratified ramp metering algorithm [25]. 

Then, with the zone identification information, the metering actions matrix is defined in the 
following Table 1. 
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Table 1. Conditions to estimate the suggested ramp inflow rate. 

Condition Index=0, 
downstream 
not controlled 
ramp 

Index=0/1, 
downstream 
controlled ramp 

Index=1, 
downstream not 
controlled ramp 

Index=2 

Type Uncongested 
Ramp 
Metering 

Controlled Ramp 
Metering 

Controlled Ramp 
Metering 

Congested 
Ramp 
Metering 

Suggested 
Ramp Inflow 
Rate 

𝑐ℎ(𝑖) − 𝑞(𝑖) 
𝑑𝑖 −

𝛥𝑡𝑖𝑑𝑖[𝑑𝑗 − 𝑟𝑡(𝑗)]

𝛥𝑡𝑗𝑑𝑗
 
𝑟𝑡−1(𝑖) 

−𝐾1(𝑇𝑡
𝑤(𝑖) − 𝜏𝑤) 

+𝐾2𝑇𝑡
𝑘(𝑖), 

𝑟𝑡−1(𝑖)
+ 𝐾1𝑇𝑡

𝑤(𝑖), 

 if 𝑇𝑡
𝑤(𝑖) < 0 

𝑟𝑡−1(𝑖)
+ 𝐾2𝑇𝑡

𝑘(𝑖), 

otherwise 

where 𝑐ℎ(𝑖) is the uncongested capacity; q(i) is the mainline demand; 𝑑𝑖 the ramp demand; j is 
the downstream controlling ramp id; 𝑟𝑡(𝑗) is the current suggested metering rate of location j; 
𝛥𝑡𝑖 = 𝑇𝑐𝑟𝑖𝑡 - 𝑤𝑡(𝑖), where 𝑇𝑐𝑟𝑖𝑡 is the ramp delay constraint and 𝑤𝑡(𝑖) is the current maximum 
waiting time at ramp i; 𝐾1 and 𝐾2 are contribution parameters depicting the importance of 
breakdown on ramp and on mainline; 𝜏𝑤 is the safe time-to-breakdown defined for the ramp; 

𝑇𝑡
𝑤(𝑖) and 𝑇𝑡

𝑘(𝑖) are the estimated time remaining to congestion on the mainline and ramp. 
The values of the parameters and the variables are calculated based on historical or real-time 
data. 

Involved Vehicle Identification 

The buffer zone is designed to differentiate the involved vehicles within each control decision 
cycle for online implementation. As aforementioned, the length of on-ramp buffer zone is 
predefined, while the length of the mainline buffer zone may change with the traffic condition, 
which is considered as 

 𝐿𝑚𝑎𝑖𝑛 =
𝑞𝑚𝑎𝑖𝑛

𝑞𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑
𝑛 𝑑𝑚𝑎𝑖𝑛⁄  (4) 

where 𝑞𝑚𝑎𝑖𝑛 is the mainline traffic flow known from corridor traffic condition; 𝑞𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑  is the 

suggested on-ramp inflow rate assumed to be known; n is the number of on-ramp vehicles 
currently in the buffer zone; 𝑑𝑚𝑎𝑖𝑛 is the mainline density. The vehicles in the buffer zones of 
both on-ramp and mainline would be controlled as a whole set till their travel through the 
merging area within the same control decision cycle. Until another vehicle reaches the 
downstream boundary of on-ramp buffer zone, a new control decision cycle is initiated and a 
new set of involved vehicles are determined. Depending on the prevailing traffic conditions, the 
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number of involved vehicles in each set (during each control decision cycle) may vary and the 
control processes or multiple LQ tracker controllers for different vehicle sets may perform in 
parallel. 

Optimal Sequence Determination 

There are three sub-steps in the Optimal Sequence Determination process, including possible 
sequence generation, linear quadratic tracking, and energy consumption estimation. In this 
process, all the possible orders of the involved vehicles will first be generated. For each order, 
the optimal system inputs (acceleration of each involved vehicle) can be solved by a LQ tracker. 
Then based on the system dynamics, the speed profile can be calculated and the energy 
consumption can be estimated by a microscopic electric vehicle energy consumption model [3]. 
Each possible order is associated with one aggregated energy consumption value (for all the 
involved vehicles), and the sequence with the least aggregated energy consumption is picked as 
the optimal scenario. Vehicle-level will then use this order to control the vehicles motion. 

1) Possible sequence generation: Given the assumption that all the involved vehicles 
within each control decision cycle would not change their lanes during the merging 
process, vehicles on the same lane cannot overpass their preceding ones. Therefore, if 
there are 𝑀 mainline vehicles and 𝑁 on-ramp vehicles, the number of possible 
sequences after merging equals to 𝑃(𝑀 + 𝑁,𝑁), where 𝑃(·) is the permutation 
operation. Because a large number of involved vehicles may lead to combinatorial 
explosion and make the system intractable for real-time implementation, the 
predefined length of on-ramp buffer zone plays a key role to confine the control group 
to a reasonable scale. This can be considered as one way to balance the computational 
load. 

2) Linear quadratic tracking: Based on the initial states, the finite-horizon linear quadratic 
tracking algorithm is able to generate the optimal solution in the designated finite time. 
The weight 𝑄 and 𝑅 matrices are fine tuned to keep the balance of tracking error and 
control input and also to hold the hard constraints. For better performance, the 
weighting factors for on-ramp vehicles and for those mainline vehicles are tuned 
independently. The solution is calculated iteratively as follows: 

 {
𝑆𝑁 = 𝐶

𝑇𝑄𝑁𝐶

𝑉𝑁 = 𝐶
𝑇𝑄𝑁𝑟𝑁

 (5) 

 {
𝑆𝑖 = 𝐶

𝑇𝑄𝐶 + 𝐴𝑇𝑆𝑖+1 − 𝑆𝑖+1𝐵(𝑅 + 𝐵
𝑇𝑆𝑖+1𝐵)

−1𝐵𝑇𝑆𝑖+1𝐴

𝑉𝑖 = {𝐴
𝑇 − 𝐴𝑇𝑆𝑖+1𝐵(𝑅 + 𝐵

𝑇𝑆𝑖+1𝐵)
−1𝐵𝑇}𝑉𝑖+1 + 𝐶

𝑇𝑄𝑟𝑖
     ∀𝑖 = 1, 2… ,𝑁 − 1 (6) 

 {
𝐾𝑖 = (𝐵

𝑇𝑆𝑖+1𝐵 + 𝑅)
−1𝐵𝑇𝑆𝑖+1𝐴

𝐾𝑖
𝜈 = (𝐵𝑇𝑆𝑖+1𝐵 + 𝑅)

−1𝐵𝑇
          ∀𝑖 = 1, 2… ,𝑁 − 1 (7) 

where Equation (6) is the discrete time algebraic Riccati equation; N is the predefined 
finite horizon; i is the time index for each iteration; 𝐾𝑖 is the feedback gain and 𝐾𝑖

𝜈  is the 
feed-forward gain. 𝑆𝑖 , 𝑉𝑖 , 𝐾𝑖, and 𝐾𝑖

𝜈  are found iteratively backwards in time. Then the 
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solution is given by 𝜇𝑖 = −𝐾𝑖𝑥𝑘 +𝐾𝑖
𝜈𝑉𝑖. With the control input 𝜇𝑖 and the system 

dynamic Eqution (2), trajectories of all the vehicles can be calculated. 

3) Energy consumption estimation: Based on the electric vehicle energy consumption 
estimation model, the energy consumption rate can be determined by the nonlinear 
function of current speed and acceleration: 

𝑃 = 𝑓(𝑣, 𝑎) = 𝑓0 + 𝑙1𝜈cos(𝛼) + 𝑙2𝜈sin(𝛼) + 𝑙3𝜈
3 + 𝑙4𝑣𝑎 + 𝑙5𝑣

2cos(𝛼) + 𝑙6𝜈
2sin(𝛼) +

𝑙7𝑣
4 + 𝑙8𝜈

2𝑎 (8) 

where 𝑙𝑖 is the model parameter calibrated by different driving conditions; 𝛼 is the road 
grade (rad). In our simulation, we assume the road grade is zero. 

Optimal Motion Control 

This module uses the results from previous step to control the motion of the involved vehicles. 
The controller chosen in this study is a receding-horizon LQ tracker for potentially online 
implementation. The advantage of receding-horizon LQ tracker than the previous finite-horizon 
LQ tracker is that it enables the closed-loop mechanism in the control system. At each rolling 
time window, the controller can update the initial states with the current state, and we only 
use the converged feedback gain and feed-forward gain to control the system. The Q and R 
parameters for this receding-horizon controller are selected to be the same as the ones used in 
the prediction step to get consistent results. When the constraints do not hold in certain time 
step, the optimal solution will be recalculated by enlarging the current time window until the 
constraints are satisfied. 

As aforementioned, given the suggested ramp inflow rate, not all the vehicles within the on-
ramp buffer zone should be controlled to enter the merging zone during the same time interval. 
Under the selected car-following model, if the leader arrives the trigger point earlier than this 
time, the ramp inflow rate would be higher than suggested. Here, we further assume the 
following behavior of the leader (to its predecessor if any) can be modeled by IDM [76], based 
on which we predict its ETA. The vehicle governed by the IDM presents a second order dynamic 
shown as follow: 

 𝜈̇ = 𝑎(1 − (
𝜈

𝜈0
)
𝛿
− (

𝑠∗(𝜈−𝛥𝜈)

𝑠
)
2
) (9) 

 𝑠∗(𝜈 − 𝛥𝜈) = 𝑠0 + 𝜈𝑇 +
𝜈𝛥𝜈

2√𝑎𝑏
 (10) 

where 𝜈0 is desired velocity; 𝑠0 is minimum spacing; 𝑇 is the desired time headway; a is the 
maximum vehicle acceleration; b is comfortable braking deceleration. The leader will be 
controlled by a linear feedback controller if ETA is smaller than the suggested time. 

  



 

 21 

Simulation Study 

In this chapter, we focus on the simulation study for the proposed ramp merging system with 
the microscopic traffic simulator PTV VISSIM [78] to validate the effectiveness of the system. 
Different from the numerical simulation that most of the previous research conducted, traffic 
simulation can offer more realistic real-time interaction between the equipped vehicles and 
other traffic in the network. This enables a better observation of the impact of the proposed 
system on the whole traffic over the time. Through the DriverModel API, the behavior of the 
CAEVs in the network can be controlled with the proposed algorithms. Uncontrolled vehicles in 
the network are modeled by the default vehicle model in VISSIM. The simulation network is 
built based on a segment along California State Route 91 (SR-91), including the Serfas Club Dr. 
on-ramp and Paseo Grande on-ramp in Corona, CA (see Figure 6). We conduct simulation study 
on both single-ramp network (with the Serfas Club Dr. on-ramp only) and two-ramp network, 
respectively, and the results are presented in the following sections. As our project is focused 
on the longitudinal control of the vehicles, we simplify the mainline segment with single lane. 

 

Figure 6. Snapshot of simulation network in PTV VISSIM. 

Simulation with Single-Ramp Network 

In the single-ramp (i.e., Serfas Club Dr. on the left side of the figure) network simulation, the 
conventional ramp metering system and the ramp without any control approach are also 
introduced for comparison. Based on the observation and parameter settings, the merging area 
capacity is around 1800 passenger car unit/hour/lane (pcu/hr/ln). According to this, the ramp 
inflow rate is dynamically adjusted to regulate the overall traffic flow not to exceed the 
capacity. For fair comparison, the baseline ramp metering rate is also set to match the inflow 
rate that is regulated by the proposed system. The desired speed for mainline/merging traffic is 
73.8 mph. The initial speed of on-ramp vehicles while entering the control zone is 33.5 m/s.  

We consider two scenarios based on different traffic conditions. Each scenario contains two 
phases, lasting 600s respectively. For mainline traffic, 1600 pcu/hr/ln is considered as heavy, 
and 1200 pcu/hr/ln is as moderate. For ramp traffic, 500 pcu/hr/ln is considered as heavy, and 
300 pcu/hr/ln is as moderate. Table 2 shows the settings of simulation scenarios in this study. 
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Table 2. Scenario matrix for the single-ramp network simulation. 

 Phase 1: 0-600s Phase 2: 600-1200s 

 Mainline Inflow Ramp Inflow Mainline Inflow Ramp Inflow 

Scenario 1 1600 500 1200 300 

Scenario 2 1600 300 1200 500 

The simulation results measured by the mobility metric are shown in Table 3 and Table 4. The 
mobility performance is measured by network efficiency, 

𝑄 =
𝑉𝑀𝑇

𝑉𝐻𝑇
 

where VMT is the total vehicle-miles traveled in the network; and VHT is the total vehicle-hours 
traveled in the network accordingly. 

In Scenario 1, the heavy traffic of both mainline and ramp in Phase 1 rapidly caused the 
congestion in the network for both ramp metering case and no control case. At each time when 
the ramp vehicle merged, a shockwave was generated and spread to the upstream, which 
eventually evolved to stop-and-go traffic along the mainline. In addition, the consistent 
shockwaves impeded the recovery of congestion, which led to low mobility of the network. As 
shown in Table 3, the overall mobility of no control case has only 29.6 mph. Although ramp 
vehicles have relatively high mobility, their uncooperative behaviors severely influenced the 
mainline vehicles. Interestingly, even though the traffic experienced severe stop-and-go 
situations with very low average speed or network efficiency, the system energy consumption 
(in kWh per 100 mile) is decent. A hypothesis is that electric vehicles may operate efficiently in 
terms of energy consumption under relatively congested scenarios due to their regenerative 
braking feature [79]. On the other hand, in the ramp metering case, since the ramp inflow rate 
was regulated, less significant impact was involved on the mainline. The mainline mobility in 
this case was 57.9 mph, much better than the no control case. However, the ramp metering 
operation severely limited the mobility on ramp, and the extremely high frequency of stop-and-
go maneuvers at very low speed also caused significant energy waste for electric vehicles. As to 
the case of the proposed optimal control, the cooperation led to the highest overall mobility 
(including both mainline and ramp), which is improved by 43.1% and 102.0%, respectively, 
compared to the ramp metering case and no control case. In terms of energy consumption, the 
proposed system outperformed both the ramp metering case and the no control case for ramp 
traffic with the smoothing effects, but the mainline traffic consumed more energy mainly due 
to the high speed (thus high load for EVs) to be maintained.  
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Table 3. Simulation results of mobility and energy for scenario 1 (single-ramp). 

  Mobility (mph) Energy (kWatt/100 mile) 

Optimal Control 

 

Overall 59.8 48.84 

Mainline 62.1 50.67 

Ramp 48.3 37.26 

Ramp Metering 

 

Overall 41.8 51.34 

Mainline 57.9 47.15 

Ramp 13.6 82.84 

No Control Overall 29.6 44.13 

Mainline 27.6 43.95 

Ramp 52.2 45.43 

In Scenario 2 (see Table 4), since the heavy traffic of mainline and ramp were staggered, the 
traffic condition was generally moderate compared to Scenario 1. Therefore, the mobility 
performance is better for all cases. The proposed optimal control system still achieved the best 
mobility, improving 45.3% compared to the ramp metering case and 95.6% compared to the no 
control case. In terms of energy consumption, high average speed resulted from the proposed 
system seems to be a penalty for electric vehicles, and the “sweet spot” (in terms of energy 
factor) in this study falls in the range between 27 mph and 34 mph. 

Table 4. Simulation results of mobility and energy for scenario 2 (single-ramp). 

  Mobility (mph) Energy (kWatt/100 mile) 

Optimal Control 

 

Overall 66.7 51.53 

Mainline 69.0 53.29 

Ramp 54.1 39.58 

Ramp Metering 

 

Overall 45.9 50.97 

Mainline 64.5 46.93 

Ramp 14.5 81.29 

No Control Overall 34.1 42.87 

Mainline 32.7 42.59 

Ramp 49.6 44.95 
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Simulation with Two-Ramp Network 

In this section, the cooperation of two on-ramp (i.e., Serfas Club Dr. and Paseo Grande from left 
to right, as defined below as ramp 1 and ramp 2, respectively) is considered. The two-phase test 
scenario is described in Table 5. 

Table 5. Test scenario for the two-ramp network simulation. 

Phase 1: 0-600s Phase 2: 600-1200s  

Mainline 
Inflow 

Ramp 1 Inflow Ramp 2 Inflow Mainline 
Inflow 

Ramp 1 Inflow Ramp 2 Inflow 

1200 500 200 1200 300 200 

The simulation results are summarized in Table 6. Similar to the single ramp scenarios, 
congestion happened at both ramp in phase 1 for the no control case. The congestion spread to 
the upstream and severely influenced the mobility of the mainline vehicles. Therefore, the 
mainline mobility is as low as 30.0 mph. The mobility of ramp 1 vehicles was lower than the 
ramp 2 vehicles mainly because that after merging into the mainline, ramp 1 vehicle would slow 
down by the shockwaves generated from ramp 2. For the ramp metering case, mobility of 
ramps was sacrificed to reduce the influence on the mainline. As the result, on major 
shockwave was observed while simulation, and the mainline’s mobility increasing 114.7% and 
the overall mobility increasing 21.0% compared to the no control case. While it consumed 
28.3% more energy than the no control case, because of the stop-and-go maneuver of on-ramp 
vehicles. As to the proposed optimal control case, the smoothest vehicles’ trajectory was 
provided. Therefore, highest mobility (mph) was given, improving 56.5% compared to the ramp 
metering case and 89.4% compared to the no control case. What’s more, the energy 
consumption of the optimal control case is 12.5% less than the ramp metering case and 12.3% 
more than no control case. 
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Table 6. Simulation results of mobility and energy for two-ramp network. 

  Mobility (mph) Energy (kWatt/100 mile) 

Optimal Control 

 

Overall 62.3 47.13 

Mainline 65.3 48.54 

Ramp 1 57.3 44.91 

Ramp 2 54.0 40.09 

Ramp Metering 

 

Overall 39.8 53.84 

Mainline 64.4 47.76 

Ramp 1 17.1 73.68 

Ramp 2 52.0 52.72 

No Control Overall 32.9 41.98 

Mainline 30.0 42.64 

Ramp 1 41.8 38.79 

Ramp 2 57.5 46.32 

Conclusions and Future Work 

In this project we proposed a hierarchical ramp merging system for Connected and Automated 
Electric Vehicles (CAEVs). The system can not only cooperate the vehicles at ramp merging area 
to achieve a safer, smoother, and more efficient traffic flow, but also be able to regulate ramp 
vehicles' inflow rate which has the potential to leverage the corridor-wise efficiency by 
integrating with effective perimeter control on multiple ramps. We utilized the SRM algorithm 
for corridor level ramp inflow rate calculation. And we developed ramp-level data collection 
logic that can determine the right set of vehicles for online control and collect the associated 
information based on the prevailing traffic conditions. Unlike most existing studies using simple 
sequencing protocol (e.g., first-come-first-serve), we used a finite linear Quadratic (LQ) tracker 
to identify the optimal merging sequence in terms of energy consumption. A receding horizon 
LQ tracker with the same parameters was used for the optimal motion control. The simulation 
results verified the effectiveness of the proposed system. It should be pointed out that such 
multi-stage optimization framework tries to balance the problem simplification and system 
optimality. It cannot theoretically guarantee the global optimal solution to system-wide 
efficiency. 

An ongoing research direction is to investigate the eco-ramp control strategy for gasoline or 
diesel powered vehicles whose energy/fuel estimation models are more complicated than the 
electric vehicles used in this study. In addition, the application to mixed traffic scenarios where 
legacy vehicles, connected only vehicles, and CAVs co-exist would be one of our future steps.  
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Data Management 

Products of Research  

In this project, we collected vehicles’ characteristics and trajectory data from the microscopic 
traffic simulator, PTV VISSIM. These data were used for evaluating the performance of the 
proposed ramp control algorithm.  

Data Format and Content  

The data are output from PTV VISSIM via application programming interfaces (APIs). The files 
are in .csv format. The contents of each file include vehicle ID, vehicle type (to differentiate if 
the vehicle is spawned from mainline, ramp 1 or ramp 2), vehicle speed (in m/s), traveled 
distance from the spawning (i.e., odometer reading in meter), and energy consumption for 
connected and automated electric vehicles (in KJ) on the basis of one simulation time step (10 
Hz). 

Data Access and Sharing  

The data are made available publicly via the UC Riverside instance of DataDRYAD: 
https://datadryad.org/stash, which is licensed under a CC0 1.0 Universal (CC0 1.0) Public 
Domain Dedication license. The DOI for the dataset is https://doi.org/10.6086/D10M3D. 

Reuse and Redistribution  

The data should be restricted for research use only. If the data are used, our work should be 
properly cited: Wu, Guoyuan; Zhao, Zhouqiao (2019), PTV VISSIM Simulation Data for Efficient 
Eco-Ramp Control Project Funded by NCST 18-19, UC Riverside, 
Dataset, https://doi.org/10.6086/D10M3D. 

https://datadryad.org/stash
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.6086/D10M3D
https://doi.org/10.6086/D10M3D
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