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Abstract—From the perspective of an individual vehicle, 

the prediction of a “slow-down” or shockwave event on a 
freeway can help the driver reduce potential collision risks, 
enhance the driving experience, and reduce the cost of energy 
consumption and vehicle maintenance. From the perspective 
of traffic management, shockwave prediction may help 
regulate traffic flow effectively and allow for the response to 
(non-recurrent) incidents in a timely manner. In this paper, 
two real-time prediction algorithms are proposed and 
investigated, which are based on the high-resolution 
information provided from a set of connected vehicles within 
the communication range of the host vehicle. Both methods 
are able to predict the “slow-down” event under high traffic 
density at 3.51 seconds (on average) earlier than its 
occurrence. Both algorithm performances degrade with the 
decrease of the traffic density and penetration rate of the 
connected vehicles. 

I. INTRODUCTION 

By accessing real-time information from multiple 

sources (e.g., other vehicles, road infrastructure, smart 

devices, and the Internet) via wireless communications, 

connected vehicles (CVs) can play a key role in addressing 

transportation-related socio-economic problems. From the 

perspective of individual drivers, CV technology is able to 

provide prompt downstream traffic information and 

customized driving guidance, which may go beyond the 

limitation (e.g., occlusion, spatial and temporal range) of 

on-board sensors such as radar, LiDAR, and cameras. 

Further, this downstream information may even encourage 

more cooperative maneuvers between vehicles [1]. Some 

studies focus on the provision of downstream aggregate 

traffic information (e.g., average lane speed) along 

freeways [2]. However, advanced detection of downstream 

traffic state transition such as formation and dissipation of 

traffic congestion (although more challenging) is of more 

value for the driver who can then anticipate a traffic state 

transition. This can help reduce potential collision risks, 

enhance driving experiences, and reduce costs in energy 

consumption and vehicle maintenance.  

In this study, we develop and evaluate algorithms for the 

advanced detection of “slow-down” or shockwave events 

(from the perspective of the host vehicle), by leveraging 

CV technology. High-resolution information (such as 

location, speed) provided from a set of connected vehicles 

can be delivered to the host vehicle and used to develop 

driving guidance for the driver, to help him/her prepare for 

the downstream congestion formation. It is expected that 

the outcome of this exploratory study may lay the 

foundation for further developing and evaluating an 

advanced driving assistance system that may alert the 

driver about the upcoming deceleration or braking needs. 

The major contributions of this research are that: 1) the 

proposed algorithms can predict the “slow-down” events 

based on current and historical data in real-time; 2) the 

prediction performance is investigated in different 

connected vehicle penetration rates and traffic conditions; 

and 3) we utilize microscopic traffic simulation to generate 

the data for a wide variety of traffic conditions, providing 

a robust solution. 

The remainder of this report is organized as follows: 

Section II reviews background information on topics 

related to this project, including probe vehicle or connected 

vehicle-based traffic state estimation as well as traffic 

shockwave analysis and detection. Section III examines the 

problem formulation for advanced detection of a “slow-

down” event, followed by the presentation of two proposed 

algorithms, i.e., cell-based average deceleration (CAD) and 

speed standard deviation (SSD) in Section IV, to detect 

“slow-down” events. Section V describes the evaluation 

methodology and performance metrics, and the setup of the 

simulation network in PTV VISSIM as well as simulation 

results are presented in Section VI. The last section 

summarizes the findings from the project and discusses a 

few key directions for further exploration in the future. 

II. BACKGROUND 

A. Vehicle as a Sensor (VaaS) 

The majority of existing studies on detecting traffic 

congestion rely on traditional infrastructure-based sensors 

such as inductive loop detectors [3] and cameras [4], which 

generally provide aggregate traffic flow information (i.e., 

traffic volume, average speed) or even trajectories of all 

vehicles within limited road segments. However, 

information from these sensors is restricted in space, and 

therefore does not provide a full sketch of the spatial-

temporal traffic dynamics along specific routes. With the 

advent of probe vehicles and connected vehicles (CVs), or 

Vehicle as a Sensor (VaaS) in a broader sense, traffic or 

vehicle state detection based on (communication-enabled) 

probe vehicles (or “floating cars”) continues to be a topic 
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of great interest in the research community. However, most 

of these VaaS related studies have focused on: 1) the 

macroscopic or mesoscopic traffic state estimation (such as 

travel time, queue length), given the limited penetration 

rate of CVs or by integrating the measurement from other 

sources (i.e., infrastructure-based sensors) [5]–[8]; and 2) 

individual vehicle’s abnormal state identification and 

broadcast (via communication) to enable customized 

driving guidance for the drivers in host vehicles [9]–[11]. 

It is much more challenging to extract the information from 

these “mobile” sensors to reconstruct detailed and transient 

dynamics of traffic flow, especially if the penetration rate 

of CVs is low. 

B. Traffic Shockwave Detection and Analysis 

From the traffic perspective, a shockwave is highly 

related to the propagation of traffic congestion upstream, 

thus potentially resulting in deceleration and braking 

maneuvers (or “slow-down” events) of the host vehicle that 

approaches the congestion area. By definition, a 

shockwave is a boundary in a traffic stream that represents 

a discontinuity in the flow-density domain [12]. In 

particular, the shockwave formation can be considered as a 

consistent pattern of the significant reduction in speed 

propagating over space and time. Shockwave analysis is a 

technique to identify traffic congestion along a roadway 

and to estimate the rate of shockwave formation and 

dissipation. Some researchers investigated real-world 

naturalistic driving data from HD video cameras mounted 

on the pole (e.g., Next Generation SIMulation [13]) or 

drones [14] to analyze shockwave characteristics and 

dynamics. For example, Lu and Skabardonis [15] applied 

a smoothing filter to the vehicle trajectory data collected 

on the US-101 site (one of the four NGSIM datasets) for 

damping noises in raw data, and performed analyses (e.g., 

speed profiles and time-space diagrams) to visualize the 

shockwave formation and dissipation on a lane basis. 

Based on the analysis, they proposed an algorithm to 

estimate the propagation speed of shockwave on freeways. 

Other than trading the trajectory data as the signal, recently, 

researchers such as use machine learning (ML) approaches 

to predict traffic flow breakdown. 

Although the real-world datasets can provide realistic 

detailed driving data for the entire traffic flow along 

roadway segments (with some measurement errors [16]), 

the information is only applicable to specific scenarios (i.e., 

within limited spatio-temporal regions and under certain 

traffic conditions). To facilitate the exploratory study, such 

as the determination of model parameters and algorithm 

thresholds, microscopic traffic simulation is a better fit for 

the scope, provided the simulation model has been 

calibrated with real-world data. 

III. PROBLEM FORMULATION 

The objective of this study is to explore effective 

algorithms for the advanced detection of slow-down events, 

by taking full advantage of vehicle-to-vehicle (V2V) 

communications. To formulate the problem, a host 

vehicle’s bird-eye view associated with traveling along the 

same lane over consecutive time windows can be stitched 

together, as illustrated in Fig. 1 (the red trajectory is the 

host vehicle). In this space-time diagram, the red solid 

curve represents the (spatio-temporal) trajectory of the host 

vehicle, and the yellow dashed curve represents the 

maximum (downstream) communication range of the host 

vehicle along its trajectory. The shaded area under the 

yellow dashed curve, in principle, denotes the maximum 

spatio-temporal region (or “information availability 

region”) where all the possible downstream traffic 

information can be available to the host vehicle up to the 

time instant to make real-time decision. Based on this 

information, the host vehicle might be able to detect 

imminent downstream shockwaves that may result in its 

“slow-down” maneuvers. Interestingly, if the host vehicle 

travels fast (e.g., up to time t’), the information availability 

region (IAR) is small or the maximum backtracking 

duration is short. If the host vehicle speed is slow (e.g., 

between time t’ and t), the IAR is large or the maximum 

backtracking duration is long. In addition, if the roadway 

is (spatially) divided into cells and the backtracking time 

window is selected, then the area of information 

availability region that can be covered by the horizontal 

bars will depend on the size of the cell and the length of 

backtracking time window. By varying these parameters 

(i.e., cell size and window length) with the host vehicle 

speed, better coverage of the IAR would be expected and 

potentially more information would be available for the 

host vehicle to support decision making in real-time.  

In this paper, we first determine if the “slow-down” 

event occurs (from the host vehicle’s point of view), then 

develop the algorithms to extract features and characterize 

traffic states, and finally examine if the characterization 

results may provide indication of the “slow-down” 

occurrence. Once we determine if a “slow-down” event 

happens, we will check backward in time if there are any 

features or signs from the traffic along the respective road 

segment (on a cell basis) that can be utilized to predict a 

“slow-down” for the host vehicle.  

Some existing studies have focused on detecting 

abnormal driving activities or events (such as harsh braking, 

Fig. 1.  Stitched bird-eye views with respect to the host vehicle in 

a space-time diagram. 
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aggressive swerving) based on analyzing speed trajectories, 

acceleration, and heading information that may be 

available from smartphones [17] or on-board GPS/IMU 

[18]. These studies have applied a set of rules, fuzzy logic, 

or machine learning algorithms to identify these events. As 

an exploratory approach, we propose a rule-based 

algorithm to determine the “slow-down” event in this study.  

More specifically, we use the acceleration profile to 

characterize a “slow-down” event and determine its onset 

and duration, as shown in Fig. 2. The proposed “slow-down” 

identification method has two steps: 1) to find successive 

deceleration sequence that satisfies both maximum 

deceleration and duration conditions, including: a) 

deceleration is less than -2 𝑚/𝑠2  and lasts for at least 2 

seconds; b) deceleration is between -2 𝑚/𝑠2 and -1 𝑚/𝑠2 

and lasts for at least 4 seconds; and c) deceleration is 

between -1 𝑚/𝑠2  and -0.5 𝑚/𝑠2  and lasts for at least 6 

seconds; and 2) to group successive deceleration sequences 

with small enough time interval into one event.  

IV. DESCRIPTION OF ALGORITHMS 

A. Algorithm 1: Cell-based Average Deceleration 

The first proposed metric to identify slow-down events 

via connected vehicles is called Cell-based Average 

Deceleration (CAD). As shown in Fig. 3, the entire road 

network is first discretized into “cells” (whose size, 𝑑𝑠 , 

could be fixed or scenario dependent due to different traffic 

demands) on a lane-by-lane basis. A host vehicle 

continuously monitors its downstream traffic state at the 

cell level within a specific communication range, 𝑑𝑟 (e.g., 

300 meters), calculating the average deceleration for each 

individual cell of interest according to the following 

equation: 

𝛿𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡; ∆𝑡)=
𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡)−𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡−∆𝑡)

∆𝑡
  (1) 

and, 

     𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡) = {

∑ 𝑣𝑘(𝑡)𝑘∈𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡)

𝑁𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡)
, 𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡) ≠ ∅

𝑣𝑙𝑖𝑚𝑖𝑡 ,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where 𝛿𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡; ∆𝑡) denotes the average deceleration (or 

speed gradient over time) for 𝑐𝑒𝑙𝑙(𝑖, 𝑗)  at time 𝑡 ; 𝑖 
represents the index of segment (i.e., a group of cells across 

lanes); 𝑗  represent the lane index; 𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡)  is the 

average instantaneous speed of vehicles (of interest) whose 

front bumper are within the boundary of 𝑐𝑒𝑙𝑙(𝑖, 𝑗)  or 

simply termed as “in 𝑐𝑒𝑙𝑙(𝑖, 𝑗)” at time  𝑡 ; ∆𝑡  is a user-

defined look-back time step (which could be fixed or 

scenario dependent due to different traffic demands); 

𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡) denotes the index set of vehicles (of interest) in 

𝑐𝑒𝑙𝑙(𝑖, 𝑗)  at time 𝑡 ; 𝑘  is the vehicle index in the set 

𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡); 𝑣𝑘(𝑡) is the instantaneous speed of vehicle 𝑘 

at time  𝑡 ; and 𝑁𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡)  represents the number of 

vehicles (or the size of 𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡)) in 𝑐𝑒𝑙𝑙(𝑖, 𝑗) at time 𝑡. 

Please note that if there is no vehicle in 𝑐𝑒𝑙𝑙(𝑖, 𝑗) at time 𝑡 

(i.e., 𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡) = ∅), then 𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡) is assumed to be 

the roadway speed limit 𝑣𝑙𝑖𝑚𝑖𝑡  or other reasonable 

estimation (e.g., 𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡 − ℎ)  where ℎ  is the 

measurement update interval). Also, only the cells within 

the range of communication with respect to the host vehicle, 

𝑑𝑟 (e.g., 300 meters) will be considered in the calculation. 

In addition, to avoid any noise or fluctuations in 

measuring instantaneous speed, a user-defined time 

window 𝜏 ≜ 𝑛 ∙ ℎ is applied to consecutive measurement 

update intervals (e.g., 0.1 seconds for the DSRC-enabled 

connected vehicle environment) as a filter mechanism, 

where 𝑛 is a positive integer. Then, the slow-down events, 

on a cell basis would be identified and the associated flags 

would be raised for each respective cell according to the 

conditions below: 

𝛿𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡 − 𝑐2 ∙ ℎ; ∆𝑡) ≤ 𝜃 < 0, ∀𝑐2 = 0, 1, ⋯ , 𝑛. 

where 𝜃 is user-defined thresholds of cell-based average 

deceleration to determine the slow-down events; and 𝑛 is 

Host Vehicle
V2V-Equipped 

Vehicle

Conventional 

Vehicle

Lane 1

Lane 2

Lane 3

At time t = t0 Cell Length 

ds      

Traffic Flow Direction

Lane 1

Lane 2

Lane 3

At time t = t0 +  Cell Length 

ds      

 Fig. 3. Illustration of cell-based average deceleration. 

 

Fig. 2. An example showing the characterization of slow-down events. 

 

 Fig. 4.  Illustration of flag raise-up. 
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user-defined positive integer to determine the sizes of 

filtering windows for the slow-down events, respectively. 

It should be noted that in this phase, we mainly focus on 

Type I.  There are three major steps in this process:  

a) Raise flag if any of the valid cell satisfies the conditions 

(as described above) for successive h steps. More 

specifically, at each time step, the host vehicle may have 

the prediction results from multiple cells where the flag is 

raised if the predefined threshold(s) are satisfied. Then, the 

results of all cells are combined using OR logic. The 

illustration of a “flag raise-up” is shown in Fig. 4. Since the 

prediction signal calculated from CAD (similar to 

Approach II – SSD) can be fluctuant due to the randomness 

of the driving behaviors, change of valid cells, and change 

of vehicles in the cells, it is necessary to smooth the signals 

and make them robust enough for performance evaluation.  

b) Group any successive prediction sequences with too 

small-time interval(s) into one detection; and  

c) Remove any flag raising event that has too short duration. 

The detailed algorithm is shown in the following pseudo-

code: 

B. Algorithm 2: Speed Standard Deviation (SSD) 

This proposed approach is enlightened by Elfar et al. [19] 

which utilizes the vehicle distribution information to 

identify the slow-down events along a road segment. We 

have modified this method for real-time slow-down event 

prediction purpose with the following four steps:  

a) Divide the road segment into cells with a user-defined 

length (e.g., 200 ft as suggested in the study). This step is 

similar to some procedure in Approach 1. 

b) Calculate the average speed of each vehicle along each 

road segment at the lane level over a user-defined time 

interval, ∆𝑡: 

𝑣̅𝑘,𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡, ∆𝑡) =
∑ 𝑣𝑘(𝑡,∆𝑡)𝐴𝑘

|𝐴𝑘|
   (3) 

where 𝑣𝑘(𝑡) represents the instantaneous speed for vehicle 

𝑘;  𝐴𝑘 denotes the set of samples where vehicle 𝑘 travels in 

𝑐𝑒𝑙𝑙(𝑖, 𝑗)  from the time 𝑡 − ∆𝑡  to 𝑡 ; and | ∙ |  is the 

cardinality of a set. To have an enough number of the valid 

cells for prediction, the time interval, ∆𝑡, should be much 

shorter than 10 seconds. As a result, the cell size should be 

adjusted accordingly to have enough vehicles in each cell.  
c) Calculate the speed standard deviation (SSD) of the 

average speeds of all individual vehicles for each cell at 

each time step that are obtained from Step b) using 

𝑆𝑆𝐷𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡, ∆𝑡) =

√
∑ (𝑣̅𝑘,𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡,∆𝑡)−𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡,∆𝑡))2

𝑘∈𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)

𝑁𝑐𝑒𝑙𝑙(𝑖,𝑗)
  (4) 

𝑣̅𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡, ∆𝑡) =
∑ 𝑣̅𝑘,𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡,∆𝑡)𝑘∈𝐾𝑐𝑒𝑙𝑙(𝑖,𝑗)

𝑁𝑐𝑒𝑙𝑙(𝑖,𝑗)
  (5) 

d) Raise flag when SSD satisfy the following condition: 

𝑆𝑆𝐷𝑐𝑒𝑙𝑙(𝑖,𝑗)(𝑡 − 𝑐3 ∙ ℎ; ∆𝑡) > 𝜃2, ∀𝑐3 = 0, 1, ⋯ , 𝑛3 

Similar to Algorithm 1, there are also three major steps, 

as shown below, representing raising up of flags, fusion of 

neighbor events, and removal of short events. 

V. EVALUATION METHODOLOGY 

In this study, we use Confusion Matrix (CM) for 

performance evaluation. CM also known as error matrix is 

a specific table layout that allows presentation of the 

performance measurement of a classification algorithm 

[20]. As shown in Fig. 5, each row of the matrix represents 

the instances in a predicted class, while each column 

represents the instances in an actual class. The four entries 

of the CM are True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). 
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For event-based performance analysis, the matrix can be 

fill out by simply counting the number of each event. In this 

study, however, to measure the performance of the 

proposed “slow-down” prediction methods, the definition 

of predicted class needs to be modified, because the “non-

slow-down” incidents are not counted. Therefore, we use 

“rate” rather than “number” to quantify the predicted class. 

Below is a more detailed description. 

• True Positive (TP) event is defined as the earliest 

prediction signal (i.e., flag raise-up signal) within a 

time window (TW) before the onset of the associated 

actual “slow-down” event; 

• True Positive Rate (TPR) equals to the number of TP 

events divided by the total number of “slow-down” 

events; 

• False Negative (FN) event is defined if no prediction 

is made within a time window (TW) before the onset 

of the associated actual “slow-down” event; 

• False Negative Rate (FNR) equals to the number of FN 

divided by the total number of “slow-down” events; 

• False Positive Rate (FPR) is defined as the time 

duration of flag raise-up outside the time window (TW) 

divided by overall “non-slow-down” time duration; 

True Negative Rate (TNR) is defined as the time duration 

without raising flag outside the time window (TW) divided 

by overall “non-slow-down” time duration. Fig. 6. 

illustrates definitions of the above terms. In addition, the 

earliest time (within the predefined time window) to detect 

a “slow-down” in advance is also an important performance 

metric. The time from the earliest flag raise-up of a TP 

event to the actual start time of a “slow-down” event is 

called detection time. The average detection time denotes 

the average of the detection time for each TP of the host 

vehicle.   

 

VI. PRELIMINARY SIMULATION STUDY 

A. Simulation Setup 

Over the performance period of this project, hawse have 

coded a real-world network in PTV VISSIM, a microscopic 

traffic simulation platform, with up-to-date roadway 

geometry as shown in Fig. 7. More specifically, the network 

is a selected segment of US-33 E in Ohio which is a five-

mile-long road stretch with two to four lanes. The off-ramp 

3 and off-ramp 4 are the route to I-270 N and I-270 S, 

respectively. Between on-ramp 2 and off-ramp 3 and off-

ramp 4, there are 4 lanes in total, and the traffic volume is 

very high. Also, when the traffic volume from upstream is 

high, the on-ramp 1 would be another bottleneck area where 

the merging vehicles from on-ramp 1 slow down the 

mainline traffic in both left and right lanes.  
 

B. Traffic Demand 

The input volume (which is considered as a moderate 

demand scenario) and the static vehicle routing decision 

have been carefully calibrated in PTV VISSIM micro-

simulation implementation. To investigate how the 

prediction performance of the proposed methods would 

vary in different traffic demands (or potentially different 

levels of service along road segments), we select another 

traffic input volume (distribution) as a high demand 

scenario. The volume of each tested scenario is shown in 

TABLE I. 

TABLE I. SET-UP OF TRAFFIC DEMANDS IN SIMULATION 

 

 Fig. 6. Definitions of modified predicted class in CM. 

 

 
 Fig. 7.  PTV VISSIM network: US-33 E. 
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 Fig. 5.  Illustration of Confusion Matrix. 
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C. Artificial Slow-Downs 

To have more speed variation samples, during the 30-

minute simulation, four artificial slow-down incidents have 

been generated using the COM interface. Other than control 

speeds of the slow-down vehicles directly, the research 

team codes a script using the COM interface to change the 

desired speed of the target vehicles to achieve more realistic 

incidents. At the simulation time 600s, 800s, 1000s, and 

1200s, the target vehicles in the segment between on-ramp 

2 and on-ramp 3 are selected randomly, and their desired 

speeds are set to be 5 km/h for 60 seconds. As a result, the 

target vehicles slow down smoothly governed by the 

driving model in PTV VISSIM, and other vehicles respond 

the target vehicles accordingly.  

D. Algorithm Parameter Selection 

The research team conducts a 30-minute simulation for 

each scenario. The vehicles’ trajectories, the cell-based 

spatio-temporal heat-map can be generated offline. The 

trajectory of the host vehicle is color-coded based on the 

lane information. All the vehicles operating in the network 

over five minutes are used as potential host vehicles for 

prediction analysis. Then, the average performance 

measurements can be calculated by weighting with the 

respective operating time. 

Besides the conditions to identify the slow-down event, 

the selection of algorithm parameters may significantly 

impact the system performance. The choice of these 

parameters may balance the sensitivity, accuracy, and 

robustness of the algorithm. In this study, we apply a trial-

and-error approach based on observations from the 

simulation results. The parameters used for this study are 

shown in TABLE II. 

TABLE II. PARAMETERS SELECTION 

E. Result Analysis 

In this section, we present some preliminary results from 

the simulation study. Fig. 8. presents a typical example of 

prediction result. The blue curve denotes the acceleration 

of the host vehicle; the orange curve denotes the slow-down 

events; the yellow curve denotes the CAD prediction; and 

the purple curve denotes the SSD prediction. As can be 

observed from the figure, CAD approach may predict most 

of the slow-down events earlier than SSD approach, but it 

also has a relatively higher false positive rate. TABLE III 

summarizes the overall simulation results, which are in line 

with the observation from the above example. Regarding 

different traffic demands and penetration rates of connected 

vehicles, the proposed algorithms’ performance may be 

degraded in moderate demands and low penetration rates, 

mainly due to the lack of available information for robust 

prediction of “slow-down” events.  

TABLE III. SET-UP OF TRAFFIC DEMANDS IN SIMULATION 

 Fig. 8. An example of prediction result 
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VII. CONCLUSIONS AND FUTURE DIRECTIONS 

A. Key Findings 

At 100% CV penetration rate, cell-based average 

deceleration (CAD) approach and speed standard deviation 

(SSD) have very comparative performance, where the 

accuracy is about 70%. With a decrease of the CV penetration 

rate, the prediction performance of both CAD and SSD 

decreases accordingly due to less information being available. 

Both CAD and SSD become less sensitive to the “slow-down” 

events, which can be verified by the decreasing trend of True 

Positive Rate (TPR) and the increasing trend of False Positive 

Rate (FPR). When the CV penetration rate is as low as 25%, 

the TPRs for both CAD and SSD are less than or equal to 0.5, 

which makes the prediction unreliable. Compared with SSD, 

CAD is more sensitive because it consistently has larger TPRs 

over different scenarios. However, due to its higher sensitivity, 

CAD also has more FPRs, which reduces the prediction 

accuracy. In terms of the detection time, CAD typically has an 

earlier prediction compared to SSD. When the traffic becomes 

less congested (e.g., only 1.67 slow-down events per trip on 

average), the number of vehicles in the valid cell and even the 

number of valid cells decrease significantly. Therefore, the 

prediction performance at moderate demand is worse than 

high demand with the same CV penetration rate. In particular, 

CAD is much more reliable than SSD during the moderate 

traffic condition. It should be noted that all the conclusions 

above are based on the simulated scenarios and the robustness 

of these findings needs further investigation. 

B. Future Directions 

The proposed approaches are governed by a number of 

predefined thresholds and parameters, which can largely 

impact the performance of the prediction. In this current 

project, such parameters are chosen based on the observations 

from a limited set of collected data. Therefore, one potential 

research direction is to find a systematic way and leverage the 

power of data-driven methods (e.g., machine learning 

technique), to find the optimal set of parameters or the best 

schema to select these parameters. It is admitted that a single 

set of parameters may not be able to cover all the traffic 

scenarios. For example, the optimal CAD thresholds and cell 

size in low-speed scenarios might be different from those in 

high-speed scenarios, as explained in the section of A “Big 

Picture”. Therefore, adaptive method(s) that can adjust the 

parameters according to the contemporary situations is worth 

further investigation. Finally, end-to-end learning techniques 

using deep neural networks (DNNs) is a promising candidate 

method for further exploration. This may help not only the 

identification of “ground truth” (i.e., slow-down) events, but 

also the detection/prediction of these events. By leveraging 

the microscopic traffic simulation software such as PTV 

VISSIM, a large amount of data can be easily generated for 

the learning purpose. Nevertheless, how to transfer the 

learning results from simulation environment to the real-world 

situation is an interesting topic. 
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