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ABSTRACT OF THE DISSERTATION 

A Connected Automation Enabled Cooperative Management 

Framework for Mixed Traffic 

 

by 

 

Zhouqiao Zhao 

Doctor of Philosophy, Graduate Program in Electrical Engineering 

University of California, Riverside, June 2023 

Dr. Matthew J. Barth, Co-Chairperson 

Dr. Guoyuan Wu, Co-Chairperson 
 

Safety, mobility, and environmental sustainability form the triad of challenges in 

modern transportation systems. To tackle these issues, there has been an increasing 

emphasis on Intelligent Transportation Systems (ITS) technology, which employs 

interdisciplinary approaches to provide effective solutions. Transportation systems are 

characterized by their large scale, non-linearity, time-varying behavior, interconnectivity, 

heterogeneity, and distributed nature, with various participants engaging in intensive 

interactions.  

As the fields of sensing, communication, and control techniques advance, we 

expect a significant rise in connected automation applications in the transportation system. 

This development will likely lead to an increased presence of Autonomous Vehicles (AVs) 

and Connected and Automated Vehicles (CAVs). However, these emerging automated 
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systems will coexist with traditional human-driven traffic for an extended period, making 

cooperation in mixed traffic conditions a crucial yet challenging research topic. 

In this dissertation, a cooperative framework for mixed traffic is proposed at both 

macroscopic and microscopic levels. Extend CDA definition for mixed traffic environment. 

At the macroscopic level, shared automated mobility applications are explored by 

formulate it as a mixed integer programming problem and consider demand-side 

cooperation, and dispatching and scheduling algorithms, based on ant copoline 

optimization, for battery electric truck fleets are investigated to improve operational 

efficiency. On a microscopic level, a corridor-wise ramp management framework is 

introduced to handle the unique challenges of mixed traffic. Moreover, with the inclusion 

of non-CAV agents such as traditional vehicles in mixed traffic, the research pursues two 

key directions. First, it examines infrastructure-side sensing to improve detection and 

monitoring capabilities, thereby enhancing decision-making and overall system 

management. Second, it undertakes the modeling of driver behavior to better understand 

and predict human actions in mixed traffic scenarios, which could lead to improved traffic 

flow management. 

The key contributions of this dissertation are listed as follows: 

• The definition of Cooperative Driving Automation (CDA) is extended to 

account for the unique characteristics of mixed traffic environments. 

• The dissertation formulates shared automated mobility as a mixed integer 

programming problem, optimizing the utilization of shared mobility services 

considering demand-side cooperation. 
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• Dispatching and scheduling algorithms are developed for battery electric truck 

fleets using ant colony optimization and recursive algorithms, improving their 

operational efficiency.  

• A corridor-wise ramp management framework based on model predictive 

control is introduced to address the challenges of mixed traffic at ramp areas.  

• A dynamic background subtraction-based method is proposed to achieve lane-

level infrastructure-side sensing using Fisheye cameras.  

• An inverse reinforcement learning-based car-following model and digital twin 

framework are developed to understand and predict human behavior in mixed 

traffic scenarios. 
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1 INTRODUCTION 

1.1 Motivation 

Traveling and freight shipping are basic needs in modern society. As a result, the 

size of the transportation network is rapidly enlarging, and the number of vehicles is also 

quickly growing. Take the United State as an example, the total length of the road network 

is nearly 7 million kilometers, and the number of vehicles is nearly 300 million [1]. In such 

a huge system, a mass of issues are threatening the health of the system operation which 

are focused on three key aspects — safety, mobility, and environmental sustainability. 

From the safety perspective, approximately 1.35 million people die each year due to the 

traffic crashes which ranks eighth in the top reason for death [2], as shown in Figure 1-1. 

On the mobility side, congestion costs on average each American 97 hours a year on the 

road as shown in Figure 1-2, and the ‘last mile’ speed of New York City is as low as 9 

miles per hour [3]. With respect to environmental sustainability, the energy consumption 

for transportation accounts for 29% of the total energy consumption in the United States, 

and 91% of the transportation energy use is from petroleum products which are not 

renewable energy [4] as shown in Figure 1-3. To deal with such difficult situations, 

optimizing the current transportation system is imperative, and cooperation between 

participants in the system is a promising solution. 
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Figure 1-2 Road traffic deaths by type of road user. [1] 

Figure 1-1 Average hours lost to congestion per driver in major U.S. cities. [3] 
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1.2 Trends and Opportunities 

Traditionally, significant efforts have been made by expanding the existing 

transportation infrastructure or enacting regulations to solve the aforementioned problems. 

Current trends in sensing techniques, communication techniques, and control techniques 

give us an unprecedented opportunity to further improve the system into a new epoch. Such 

integrative research falls into the area of connected and automated vehicles (CAVs). 

Various sensing techniques, such as the perception based on high fidelity camera, LiDAR, 

or radar, provide accurate and robust real-time information flow, and according to the 

information flow, the communication between individual traffic participants and 

infrastructure expands the horizons even further. Cellular and Wi-Fi are two promising 

candidates of communication techniques which provide reliable and ubiquitous access 

services with low latency. The control techniques, including classic control, optimization, 

and learning, specify the management paradigm to the traffic system. The potential of CAV 

technologies lie in the introduction of not only the automation but also the cooperation 

features into the system. By sharing the understanding of the situation in real-time from 

various traffic participants or infrastructure, the system can be better managed. There are 

several examples of this: 1) transportation network companies (TNCs), such as Uber and 

Lyft, bridge the demands (customers) and supplies (mobility service providers) through 

innovative platforms and smartphone apps to facilitate the completion of mobility needs 

[5]; 2) ramp management systems reduce congestion and speed fluctuation by coordinating 

the mainline and on-ramp vehicles [6]; 3) connected eco-operation for transit bus integrates 
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Eco-Stop, Eco-Cruise, and Eco-Approach and Departure to improve energy efficiency 

utilizing the information broadcasted from the roadside infrastructure such as look-ahead 

traffic, terrain conditions and signal phase and timing (SPaT) [7].  

1.3 Challenges and Research Gaps 

The cooperation problems in this dissertation can be separated into two levels based 

on their scopes. At the macroscopic level, cooperation considers the interaction between 

supplies and demands, among supplies, or among demands. While at the microscopic level, 

cooperative driving automation (CDA) is the research problem to be focused on. 

For macroscopic level cooperation, the supply-demand relationship usually can be 

formed as an optimization problem. To make the mathematical formulation as close to the 

real-world scenario as possible, more constraints have to be added. As a result, the 

computation load can be exponentially high as the scale of the problem grows. Therefore, 

an essential goal of the algorithm design for these problems is to balance the computation 

Figure 1-3 US energy consumption by sector. [4] 
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time and the optimality of the solution. The research in this area has been carried out for 

decades, and the metaheuristic algorithms and heuristic algorithms are most commonly 

used to reduce the computational load. However, as the process of vehicle electrification 

and the emergence of innovative Mobility as a Service (MaaS) concept, the formulation of 

the problem needs to be updated accordingly. 

For microscopic level cooperation, the major challenge is that the mixture of 

automation and human driver will coexist for a long time in the future. In such a mixed 

traffic condition, the legacy vehicles could be an isolated island, where no advanced 

information is shared from them. Because the dynamics of the vehicles are controlled by 

the human driver, the behavior can be highly stochastic. Also, because of the minimum 

cooperation feature, it is hard to coordinate the legacy vehicles with other CAVs to achieve 

the desired overall performance. Therefore, it is imperative that we establish a systematic 

framework to facilitate the coordination between CAVs and non-CAVs. This framework 

would serve as the bridge, synchronizing the operations of intelligent and legacy vehicles. 

Simultaneously, the implementation of a robust sensing system becomes essential. Such a 

system would be responsible for detecting and tracking pertinent vehicle information, 

forming a comprehensive and continuously updated database that can aid in effective 

decision making. Finally, a behavior model comes into play. This model is tasked with 

predicting future behaviors based on historical data and current conditions, laying the 

foundation for cooperative optimization in forthcoming periods. 
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1.4 Research Objectives and Contribution of the Dissertation Research 

The research objectives and contributions of this dissertation are anchored in the 

comprehensive examination and enhancement of cooperation in transportation systems in 

mixed traffic conditions. 

Initially, a cooperative framework is established under a multi-modal transportation 

system. The current state of research within the constituent modules of this framework is 

reviewed, highlighting areas of development and potential for further exploration. 

Subsequently, the existing definition of Cooperative Driving Automation (CDA) [8] is 

broadened to increase its applicability in mixed traffic conditions. The redefined concept 

emphasizes the importance of harmonizing intelligent and legacy vehicles for effective 

operation within mixed traffic. At the macroscopic level, two significant applications are 

addressed to substantiate the utility of the proposed cooperative framework: 1) exploration 

of shared automated mobility applications, and 2) investigation of dispatching and 

scheduling algorithms for battery electric truck fleets. It is anticipated that these 

applications will not only enhance operational efficiency but also yield insights into large-

scale coordination among diverse transportation agents. At the microscopic level, a specific 

application of the framework is illustrated through a corridor-wise ramp management 

system. This application serves to elucidate the complexities of microscopic cooperation, 

demonstrating how individual agents can interact and collaborate within the overarching 

system. To navigate the complexities associated with mixed traffic, the dissertation pursues 

two vital research directions. Firstly, roadside sensing is examined to bolster detection and 

monitoring capabilities, ultimately enhancing decision-making and overall system 

management. Secondly, driver behavior is modeled to gain a deeper understanding to and 
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predict human driving patterns in mixed traffic scenarios, thereby facilitating improved 

traffic flow management. 

1.5 Organization of the Dissertation 

The rest of the dissertation is organized as follows: 

Chapter 2 expounds on the categorization and definition of cooperation in 

transportation systems. It focuses on both macroscopic and microscopic levels, examining 

the supply-demand balance and cooperative driving automation (CDA). Chapter 3 contains 

a comprehensive review of the key modules in the framework. It presents different traffic 

state estimation techniques, explores the role of infrastructure-based sensing, discusses 

driving behavior modeling, and analyzes various optimization and control methods. 

Chapter 4 is devoted to macroscopic cooperation. It begins by examining shared automated 

mobility with demand-side cooperation. The chapter then proceeds to discuss the fleet 

dispatching strategy for battery-electric trucks. Chapter 5 pertains to microscopic 

cooperation. Here, a corridor-wise eco-friendly cooperative ramp management system for 

connected and automated vehicles is introduced and examined in detail. Chapter 6 

addresses the mixed traffic problem. Two key areas are investigated: infrastructure-based 

sensing for better detection and monitoring capabilities, and driver behavior modeling for 

improved understanding of human interactions in mixed traffic scenarios. Chapter 7 

concludes the entire dissertation, summarizing the research outcomes, highlighting key 

publications resulting from this research, and suggesting directions for future work in the 

domain of intelligent transportation systems. 
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2 CATEGORIZATION AND DEFINITION TO COOPERATION IN 

TRANSPORTATION SYSTEMS 

Cooperation is the process of groups of agents working together for common, 

mutual, or some underlying benefits, as opposed to working in competition for selfish 

benefits [9]. In general, the mutual benefit can be defined as the single or the combination 

of the three fundamental problems, i.e., safety, mobility, and environmental sustainability, 

for different types of traffic scenarios.  

As shown in Figure 2-1, the cooperative transportation system is constructed with 

multiple transportation participants such as road users and infrastructure, where the target 

cooperation agents vary from case to case. The road users including non-CAVs agents, 

who do not share detailed information through communication and are not controllable 

through outside commands, such as human-driven vehicles, pedestrians, and so on; and 

CAVs which contains at least sensing module, communication module, and vehicle control 

module. The infrastructure in the transportation system includes surveillance and sensing 

systems such as loop detectors, monitoring camera; and traffic control systems such as 

traffic light and ramp meter. The planner module, as the core of the cooperation, can be 

deployed in individual CAVs and in the infrastructure. If the planner is deployed in 

individual CAVs, it is a distribution-oriented cooperation where the planner makes 

decisions in a decentralized way. On the other hand, if the planner is deployed in the 

infrastructure, in general, a centralized cooperation can be executed.  

2.1 Macroscopic Level – Supply vs. Demand 

The many-to-many relationship between supply and demand is highly coupled and 

can be defined as the macroscopic level cooperation in transportation systems. This supply-
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demand relationship adapts well in the transportation system context in many cases. For 

example, dispatching and scheduling according to the supply and demand has been 

explored in the field of operation research for years. Two typical scenarios discussed in 

this thesis are the truck fleet operating in regional dispatching application and the on-

demand shared mobility paradigm for the next-generation urban transportation systems. 

Among these applications, cooperation plays an important role to improve overall system 

efficiency and reduce unnecessary costs such as detours or deadheading.  

For the truck fleet dispatching application, the problem can be considered as an 

extension of the classic Vehicle Routing Problem (VRP) [10], which is a well-known 

combinatorial optimization problem in transportation logistics. The major goal of VRP is 

to find the optimal or near-optimal itinerary for the truck fleet given the pick-up and 

delivery order information, which considers the scheduling and routing of multiple vehicles 

cooperatively. Most of the real-world problems are often more complex than classical 

VRP. Therefore, studies of VRP usually try to extend the classic VRP by adding further 

constraints. For instance, the capacitated vehicle routing problem (CVRP) is defined by 

Figure 2-1 Multi-Modal Cooperative for Transportation System. 
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adding the carrying capacity limitation of the vehicles [11], and the vehicle routing problem 

with time windows (VRPTW) is defined by adding the scheduled time of each customer 

[12]. Also, VRP with pickup and delivery (VRPPD) studies the scenario that customers 

may request services with pickup and delivery [13]. Up to now, the problem is still the 

cooperation of supplies only. With the electrification of the vehicle fleet, more and more 

research turn to the topic of the electric vehicle routing problem (E-VRP) and its extensions 

[14]–[16]. For E-VRPs, the possibility of recharging at available charging stations is 

considered. These opportunistic charging, requiring the coordination of scheduling 

charging time, introduces the cooperation from the demand-side. 

For the shared automated mobility application, one example can be the new car-

pooling services emerging in major urban areas that offer the most affordable ride price 

while in exchange for a little walk of customers to/from designated pick-up and drop-off 

(PUDO) locations with respect to their origins and destinations [17]. Such flexibility in 

PUDO locations can be considered as another demand-side cooperation strategy. On the 

supply-side, the service providers, shared automated vehicles (SAVs), decide their 

assignments and routes together to avoid necessary deadheading and detour. Sometimes, 

the demands are fixed or disoperative. For example, passengers may feel uncomfortable 

and refuse to walk. The on-demand shared mobility has been considered as a cost-effective 

strategy to fulfill transportation demand without compromising traffic congestion, fuel 

consumption, and air quality. 

2.2 Microscopic Level – Cooperative Driving Automation (CDA) 

Cooperative Driving Automation (CDA) builds upon the emerging CAV 

techniques in the transportation system, which looks at the problem from a microscopic 
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perspective. In this context, the detailed dynamics and decision making of the 

transportation participants such as vehicles and pedestrians are studied. Through vehicle-

to-everything (V2X) communication, two or more participating entities (including 

communication devices) can cooperate with each other by supporting the movement of 

multiple vehicles in proximity to improve safety, mobility, and environmental 

sustainability. Such cooperation, constructed based on communications and predefined 

regulations, originates from the very beginning of the transportation system. For example, 

hand signals or turn signals can inform other road users of the intention of the current 

vehicle such that the surrounding road users can respond accordingly, e.g., slow down and 

compromise. Another example, from the infrastructure side, is the actuated traffic signals 

system with loop detectors who can change the light based on the detected real-time traffic 

condition, and the vehicles are therefore controlled based on the signal phases.  

Table 2-1 Relationship between classes of CDA cooperation and levels of automation 

[8] 
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According to the SAE surface vehicle information report J3126 [8], the CDA 

cooperation defined as Classes A through D based on the increasing amount of cooperation 

entailed in each successive class (see Table 2-1). Class A is the status-sharing cooperation, 

where perception information about the traffic environment and information about the 

sending entity provided by the sending entity for potential utilization by receiving entities; 

Class B is intent-sharing cooperation, where information about planned future actions of 

the sending entity provided by that entity for potential utilization by receiving entities; 

Class C is agreement-seeking cooperation, where a sequence of collaborative messages 

among specific CDA devices intended to influence local planning of specific dynamic 

driving task (DDT)-related actions; Class D is prescriptive cooperation, where the direction 

of specific action(s) to specific traffic participants for imminent performance of the DDT 

or performance of a particular task by a road operator, provided by a prescribing CDA 

device agent(s) and adhered to by a receiving CDA device agent(s). 

To further expatiate the features of an agent in the microscopic-level cooperative 

transportation system, a 3-dimentional coordinate system is defined, where the 3 axes are 

communication level, automation level, and cooperation inclination level, respectively.  

Figure 2-2 3-Dimensional definition of cooperative driving automation. 
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It is not difficult to find that the information shared from the traditional traffic 

system is either the direct intentions (from vehicles or other road users) or simple control 

instructions (from infrastructure). More sophisticated information such as operation status 

and perception of the surrounding environment can boost the system efficiency to a new 

level. For instance, the Cooperative Adaptive Cruise Control (CACC) system allows 

vehicles to form platoons and drive at harmonized speeds with constant time headways 

between vehicles [18]. By sharing the speed or acceleration of the vehicles, the operation 

of the group can be optimized. In this way, without compromising safety, the roadway 

capacity can be significantly increased as the reduction of the intervehicle gaps. Also, 

energy consumption and pollutant emission can be reduced because of the reduction of 

unnecessary speed fluctuation and additional aerodynamic drag if driving individually. The 

benefit of sharing the perception of the surrounding environment is that it can enhance the 

situational awareness of all the traffic participants thus enhancing the understanding of the 

overall traffic system. The largely applied application nowadays is the eco-routing system 

where road uses can be assigned to different roads to relieve traffic congestion [19]. 

Another feature that improves safety by sharing perception information is the cooperative 

object tracking, which can eliminate the risk of the blind spots of human drivers [20]. The 

degree of communication considered in this thesis is in four levels: Level 0: no 

communication, where only direct intentions from vehicles or other road users (e.g. turning 

light, braking light) and simple control instructions from infrastructures (e.g. traffic light) 

are shared; Level 1: status sharing (who am I and what am I doing), where basic safety 

message (BSM) such as vehicle size, position, speed, and acceleration are shared; Level 2: 

perception sharing (what I see), where sensed information of the surrounding environment 
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is shared; and Level 3: intention sharing (what I plan to do), where planned actions such as 

routing, lane change indicator, and desired trajectory are shared. 

Automation is another key feature of CDA applications. Human drivers can never 

concentrate continuously for a long time while driving as accurately as the automatic 

control system in terms of speed tracking, lane keeping, and so on. Borrowing from the 

well-known definition of the SAE J3016 [21], the levels of driving automation are defined 

as follows: Level 0: no driving automation; Level 1: driver assistance (longitudinal or 

lateral vehicle motion control); Level 2: partial driving automation (longitudinal and lateral 

vehicle motion control); Level 3: conditional driving automation; Level 4: high driving 

automation; Level 5: full driving automation. It can be observed from the traditional 

vehicle cooperation cases that automation is not the necessary condition. However, to 

control the dynamics of vehicle elaborately, automation is the fundamental module of the 

system. The requirement of the level of automation depends on the specific applications. 

Other than the levels of communication and automation, another important 

dimension to think about CDA is the level of the cooperation inclination. First, the legacy 

vehicles are not purely disoperative but have the minimum cooperation inclination to 

comply with the traffic regulations or conventions. For example, human drivers would 

usually slow down when seeing turning light on preceding vehicles from adjacent lanes. 

Second, for the autonomous vehicles or CAVs with only decentralized decision-making 

logic, they would consider all the information received but plan their actions solely. Third, 

the CAVs, who are willing to make decision together with others or carry out instruction 

from a centralized planner, are considered as fully cooperative agents. Combining the 

definition from SAE [8], here we define the cooperation into 3 different levels: Level 0: 
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minimum cooperation (basic cooperation only to comply with the regulations or 

conventions); Level 1: self-centered cooperation (acquire and analyze the shared 

information from others while making decisions individually); Level 2: full cooperation 

(accept centralized management from the outside controller). 

To conclude, a 3-dimensional definition of the microscopic level cooperation, 

CDA, is given in this subsection (see Figure 2-5.), which expatiates how cooperation 

formed by the traffic participants, including both the road users and infrastructure.  
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3 REVIEW OF VARIOUS FRAMEWORKS 

The key modules in the CDA system include traffic state estimation, driving 

behavior modeling, and optimization and control [6]. As the human-driven vehicle only 

share the basic intension information, the surveillance of these vehicles is required to better 

understand the real-time traffic conditions. In general, surveillance can be achieved by 

surrounding CAVs equipped with sensing systems and roadside infrastructures like 

surveillance cameras, loop detectors, and so on. Then, the traffic state estimation module 

will further analyze the data combining from both the surveillance and the CAVs. The goal 

of traffic state estimation is to provide an accurate prediction of the current traffic 

information both microscopically and macroscopically based on apriori knowledge and 

partial observation. Surveillance data for individual human-driven vehicles is also valuable 

for better understanding and predicting the behavior of that vehicle. Therefore, the data 

will also be fed into the driving behavior model, which will conclude the driver behaviors 

into a mathematical form such as a utility function or a reward function. This kind of 

function can depict how the specific human driving interacts with the environment. Then, 

the optimization and control module will decide detailed instruction for the controllable 

agents like CAVs. The instruction can be the desired trajectories, powertrain control 

signals, and so on. 

3.1 Traffic State Estimation 

Accurate measurement and estimation of prevailing traffic conditions are the 

foundation of effective cooperation driving automation. Since it is difficult and expensive 

to obtain complete information on the traffic (e.g., 100% penetration rate of connected 

vehicles), estimation of traffic states, such as flow, density, and speed, from partially 
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observed traffic data plays an important role. Seo et al. performed a comprehensive survey 

about traffic state estimation which provides a guideline into this field [22]. The categories 

listed below are on the basis of their suggestion. 

At the macroscopic scale, road networks are divided into several segments without 

further merging or diverging, which are called links. Inside each link, the traffic states can 

be considered to be homogeneous. Usually, flow (veh/hr), density (veh/km), and speed 

(km/hr) are three key variables used for traffic flow management. 

Raw data available for estimation can be categorized as stationary and mobile. The 

stationary data is collected by fixed location sensors such as inductive loop detectors, 

micro-wave radars on the roadside, and surveillance cameras. The mobile data is collected 

by moving vehicles equipped with sensors such as GPS, onboard radar, and camera. The 

emergence of CAVs on roads can provide a significant amount of mobile sensor data. 

Traffic flow model is widely used for traffic state estimation. The models are 

usually based on physical and empirical relations. Borrowing the idea of the hydrodynamic 

theory, the fundamental diagram depicts the relationship between density and speed, and/or 

density and flow [23], [24]. Another dynamic representation model with the hydrodynamic 

theory is cell transmission model (CTM) [25], which utilizes the discrete analog of the 

differential equations arising from a special case of the hydrodynamic model of traffic 

flow. Because of the conservation law for the traffic hydrodynamic, the aggregated 

behavior of traffic is depicted by partial differential equations. Lighthill-Whitham-Richard 

(LWR) model is the most commonly used first-order model [26], [27], and there are many 

higher-order models such as Payne-Whitham (PW) model [28], [29]. 
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3.1.1 Model-Based Approaches 

Model-based approaches are widely used in the field of traffic state estimation, 

where the aforementioned traffic flow models are applied. The parameters of the models 

are usually calibrated via historical data from the field. After the calibration, target data is 

fed into the model to estimate the traffic states. Coifman proposed a method of estimating 

microscopic vehicle information (i.e., travel times and trajectories) using LWR model and 

loop detector data [30]. Wang and Papageorgiou estimated macroscopic traffic via 

Extended Kalman Filter (EKF) [31]. However, these approaches may fail if inappropriate 

models are adopted. Furthermore, as the parameters are calibrated by specific data sets, the 

model-based approaches may not be so adaptive to the drastic changes in traffic conditions. 

3.1.2 Learning-Based Approaches 

Different from model-based approaches, no empirical traffic flow models are used 

in learning-based approaches. Learning-based models are trained through statistical 

methodologies or machine learning techniques given a large amount of historical data. A 

typical learning-based estimation approach was proposed by Tak et al. [32], in which k-

nearest neighbors (KNN) algorithm was applied. Because of the challenge to well interpret 

the features of the learning scheme, it is difficult to analytically comprehend how the entire 

system works even though the results may be very attractive. Additionally, similar to the 

model-based approaches, the dependency of the trained data set makes the system not 

flexible enough to transfer to other untrained scenarios. 
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3.1.3 Streaming-Data-Driven Approaches 

Without using neither empirical models nor historical data, streaming-date-driven 

approaches only rely on real-time data and “weak” assumptions. Therefore, it is more 

robust to different traffic conditions. The “weak” assumption such as Conservation Law is 

generally reasonable, considering the physical constraints. Recent research was performed 

by Florin et al. [33], who presented a mobile observer method with aggregated information 

on the number of overtaking maneuvers of vehicles. The increasing number of CAVs and 

connected vehicles on freeways can provide a large amount of streaming data for traffic 

state estimation, which makes it possible to consider mixed traffic scenarios. Bekiaris-

Liberis el al. proposed a mixed traffic state estimation method with a streaming-data-driven 

approach utilizing only average speed measurements reported by connected vehicles and a 

minimum number (sufficient to guarantee observability) of spot-sensor-based total flow 

measurements [34]. 

3.2 Infrastructure-Side Sensing 

As a crucial module in the cooperation system under mix-traffic conditions, 

infrastructure-side sensing plays a pivotal role. For those agents designated as non-CAV, 

such as human-driven vehicles and pedestrians, infrastructure-side sensing can 

conveniently supply their location information. This integration allows for a more seamless 

interaction between different traffic participants, serving to augment overall system 

efficiency and safety. This cooperative system is built on the robust data collected and 

distributed by the infrastructure-side sensing technology, fundamentally enhancing the 

situational awareness and decision-making capabilities of all participants in the mix-traffic 

environment. 
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3.2.1 Vision-Based Perception 

Datondji et al. [35] give a comprehensive survey of the traffic monitoring of road 

intersections, where vision-based vehicle detection plays the most important role in the 

system. In general, vision-based detection can be categorized into five classes, including 

background subtraction [36], model-based detection [37]–[40], feature-based detection 

[41]–[45], motion-based detection [46], [47], and Artificial Neural Network (ANN)-based 

detection [48]–[55].  

The approaches requiring historical data are model-based detection and ANN-

based detection. Model-based object detection identifies possible foregrounds in images 

by fitting vehicles’ 2D or 3D models to image regions. However, the methods require a 

large database of vehicle models from different perspectives and lighting conditions. 

Therefore, some studies introduced probabilistic frameworks or motion information to 

reduce the search space and improve the system robustness [39], [40]. With the fast 

development of deep learning techniques, ANN-based approaches have dominated object 

detection applications in recent years. In the specific dataset, the most recent network, such 

as Fast R-CNN [50], [54], [55], SSD [52], and YOLO [51], [53], can even outperform 

humans. However, it requires a large amount of labeled data for training to have good 

prediction accuracy. Although some networks are built for small object detection based on 

onboard fisheye cameras, there is no complete solution suitable for our scenarios: object 

perception (detection, localization, and tracking) with roadside fisheye cameras where 

moving objects range in size from small to large with distortion. 

Considering the lack of roadside perception datasets, data-free approaches such as 

feature-based detection, motion-based detection, and background subtraction are more 
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suitable for the early-stage development of the roadside perception system. Feature-based 

detection methods combine, graft, and track the geometry or appearance features, such as 

SIFT [56], SURF [57], and Haar-like Wavelets [58], to select the vehicle candidate in the 

image. These human-selected features are intended to capture the unique characteristics of 

the objects while also being resistant to minor alterations in diverse environments. One of 

the significant challenges for feature-based detection is occlusion, where the feature of the 

occluded object would be lost. Motion-based detection approaches utilize optical-flow 

techniques [46] to extract the movement of the candidate objects from the background 

image. The traffic surveillance application usually has a good performance as the 

background is relatively consistent. However, these approaches are usually 

computationally heavy and not robust for slow-moving or stationary object detection.  

Finally, one of the most common approaches for extracting foreground objects from 

target photos is background subtraction. Because a static background is susceptible to 

changes in the background environment, such as light, shadow, and weather, employing a 

predefined background image typically results in poor system performance and stability. 

As a result, the most important module is to generate real-time background images in 

response to changes in the surroundings, which can be defined as dynamic, statistical, or 

adaptive background estimation. The representative dynamic background estimation 

algorithms are Gaussian Mixture Model (GMM)-based method [59], Fuzzy models [60], 

[61], Local Binary Similarity segmenTER (LOBSTER) [62], and Visual Background 

extractor (ViBe) [63]. However, the existing methods still face numerous challenges. For 

example, the GMM-based method necessitates a proper initiation of the background model, 

which can be difficult to achieve in practice. Some methods, such as LOBSTER, are 
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computationally heavy, thus not capable of real-time perception. Furthermore, all the 

existing adaptive methods are sensitive to objects that are moving slowly or stationary. 

After numerous iterations, the vehicles idle at the intersection waiting for the red light may 

be erroneously classified as part of the background.  

The localization process is necessary to get the location of the detected objects in 

the world coordinates. Localization from the onboard vehicle perspective has been studied 

for decades, which usually requires a high-definition map or additional sensing sources 

such as GPS and IMU [64]. As to the roadside perception use cases, because the cameras 

are fixed at certain locations, the localization process can be rather simplified. For 3D 

sensors like LiDAR or multi-camera, the location of the detected object can be calculated 

based on the extrinsic calibration parameters [65]. For 2D sensors like a single camera, it 

requires either a projection from 2D to 3D space or depth estimation [66]. 

Vision-based Multi-Object Tracking (MOT) algorithms process image sequences 

to create object correspondences over the images and assign consistent identification 

numbers to the detected objects [67]. Most of the methods utilize Kalman Filter (KF) to 

predict the object's motion from one frame to another. The most well-known MOT 

algorithm is SORT [68], which associates objects using bounding box detection. Then 

DeepSort [69] improved the bounding box association step by introducing Convolutional 

Neural Network (CNN). Instead of bounding box tracking, Zhou et al. proposed 

CenterTrack [70] to track objects as points, which is not only accurate but also fast. 
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3.2.2 Sensor Selection and Challenge 

LiDAR is an active sensor that generates the range and reflection point cloud, 

whereas a camera is a passive sensor that projects the 3D space into 2D planes with three 

color channels. As a result, it is easier for the camera to recognize the objects but harder to 

obtain precise range information. Because the roadside sensors often shoot to the ground 

and all the objects (e.g., cars, pedestrians) are assumed to move on the ground surface, the 

ranging impacts may be minimal. In comparison to LiDAR, however, the camera normally 

has significantly greater resolution. Therefore, in this study, we choose the camera as the 

sensor of our RSPU. Compared to the regular perspective camera, the fisheye camera or 

omnidirectional cameras are becoming increasingly used in multiple areas such as traffic 

monitoring [71] and drone sensing [72] due to its wider detection view. Taking advantage 

of this feature, fewer cameras are required to cover the entire range of the target 

intersection. However, the images from the fisheye camera suffer from distortion and 

perspective effects, which necessitate additional processing. Furthermore, unlike the 

development of onboard detection algorithms, which already has a large amount of labeled 

data, the roadside camera dataset with positioning information, let alone fisheye camera 

dataset, are scarce. As a result, instead of deep learning-based approach, we have to rely 

on the image processing and conventional computer vision techniques to achieve the data-

free real-time detection, localization and tracking tasks. 

3.2.3 Fisheye Camera Applications  

Due to the large angle of view, fisheye lens camera is becoming more and more 

popular in automated driving and roadside monitoring applications [73]. As the incident 

light cannot be projected onto a limited plane, fisheye lens modeling usually relies on 
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equisolidity projection, orthogonal projection, or stereographic projection [74], which 

makes the calibration of the fisheye camera more difficult. The calibration method for the 

fisheye intersection detection and tracking is discussed in the Methodology section. Due to 

the lack of 3D datasets of fisheye images, Plaut et al. offered a 3D object detection model 

that is trained only on the rectilinear images without using any fisheye training data [75]. 

Although the majority of the current image dataset is from a regular camera, some new 

dataset from a fisheye camera has emerged as a result of the increased interest in this. For 

example, Rashed et al. create an open-source dataset consisting of 10,000 fisheye images 

along with all the object representations of ground truth for autonomous driving [76]. The 

fisheye camera-based detection and tracking technique appears to be promising. Using the 

labeled fisheye data, Yahiaoui et al. proposed a FisheyeMODNet to detect moving objects 

on surround-view cameras for autonomous driving, which can run at 15 frames per second 

on an automotive embedded system at an accuracy of 40% [77]. To enhance the perception 

performance by adding a different data source, Zhu et al. introduced attitude data and fused 

them with raw fisheye images [72]. From the roadside perspective, Wang et al. presented 

a feature-based real-time detection approach to track and count vehicles using simple 

feature points tracking grouping and association [71]. 

3.3 Driving Behavior Modeling 

Modeling and predicting the driving behavior of conventional human-driven 

vehicles are essential for designing the motion behavior of CAVs in mixed traffic 

conditions. In this section, I will first introduce car-following models, which are widely 

used in CDA applications such as CACC and ramp management system. Then, a more 
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detailed algorithm, inverse reinforcement learning, is reviewed as it potential of modeling 

human-driven behavior. 

3.3.1 Car-Following Model 

The task of P-ACC design can be regarded as both the driving behavior modeling 

and the personalized car-following controller adaptation. Therefore, in this section, we 

briefly review existing methods for driving behavior modeling and taxonomies of car-

following models. Some of the methods tackle these two tasks separately, while others 

couple the two tasks and provide a control scheme in an end-to-end manner. 

One of the most prevalent methods for vehicle longitudinal control is to design 

control policy based on physics laws, where the most common ways are by modeling the 

car following with an Ordinary Differential Equation (ODE) (i.e., 𝑣̇ = 𝑓(𝑠, 𝑣, 𝑢)). The 

ODE equation explicitly depicts the interaction between the driver and his/her front vehicle 

considering the dynamics of the ego vehicle, which can be categorized as an end-to-end 

method. The car-following behavior is determined by the acceleration of the ego vehicle, 

which is derived based on the speed of the ego vehicle and the preceding vehicle and their 

distance gap using the ODE equation. The most commonly used models under this category 

include Gipps model [78], Intelligent Driver Model (IDM) [79], as well as Newell’s car-

following model [80]. Other than mapping the control input directly using the ODE, 

another type of physics-based controllers first model the car-following dynamics in the 

state space, and then use the Model Predictive Controller (MPC) to optimize the predefined 

objective functions in terms of the factors like comfort, safety, and fuel economy 

requirements [81], [82]. The major drawback of the physics-based approaches is that it is 

relatively difficult for them to capture personalized behaviors. 
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On the other hand, the data-driven methods model the car-following behaviors from 

the demonstrated trajectories directly. As a result, they are naturally suitable for modeling 

personalized driving styles. Most of the data-driven methods follow the end-to-end scheme, 

aiming to find the mapping function from current states (or previous sequential states) to 

control inputs. In general, data-driven methods can be categorized into two types. The first 

one is Imitation Learning, where models clone behaviors of the demonstrations by 

learning the mapping from states to actions. Wang et al. used Gaussian Process Regression 

(GPR) to learn drivers' behaviors from naturalistic data, as it only requires a small amount 

of data and uses Bayesian treatment to avoid overfitting. However, the computational 

complexity of GPR is 𝑂(𝑛3) for training and 𝑂(𝑛3) for inferencing, which severely limits 

the scalability of the method [83]. Wang et al. and Pongtep et al. applied the Gaussian 

Mixture Model (GMM) for stochastic driver behavior modeling [84]. However, GMM 

treats the data as a set of scattered points and does not consider the dynamic of the system 

nor the transition preference of the driver. With the rapid development of deep learning, 

Deep Neural Network (DNN)-based approach has been used widely to model car-following 

behaviors such as [85], [86]. Furthermore, because driver's decision-making may be a 

sequential process, memory networks, such as Recurrent Neural Network (RNN) [87], 

Long Short-Term Memory (LSTM) [88], and Attention-Based Network [89], have also 

been successfully employed for car-following model. However, as the demonstration 

trajectories cannot traverse the entire state space, extrapolation is required at the inference 

stage. Therefore, the performance of the systems cannot be guaranteed. Applying a safety 

filter after the network output is necessary to ensure safety as described in [90].  
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The second type of data-driven approach is Apprenticeship Learning, which 

decouples driving behavior modeling and car-following controller adaptation. The models 

first reason driver's behaviors by approximate rewards/objectives of demonstration 

trajectories using IRL [91]–[95] or Inverse Optimal Control (IOC) [96]. Then, MPC, RL, 

or other controllers are applied based on the recovered rewards/objectives. Rather than 

directly reproducing the motion, apprenticeship learning method apprehends the preference 

of the target agent before making decisions. As a result, it is expected to have better 

performances for unseen scenarios. In addition, because the controller design is decoupled 

with behavior modeling, both stability and safety can be guaranteed mathematically based 

on the choice of the controller. Some researchers also tried to use RL (or deep RL) directly 

to train a human-like car-following policy [97], [98]. As handcrafted reward functions 

consider different factors, they usually have good performance in specific environments. 

However, they fail to depict drivers' personalized behaviors. 

3.4 Optimization and Control 

The optimization and control module is the core of the cooperation applications as 

it determines the behaviors of the controlled CAVs and will highly influence the system 

performance. In this section, we strategically categorize the optimization and control into 

two types: centralized approaches and distributed approaches. 

3.4.1 Centralized Approaches 

We define a CAV coordination approach as centralized if the tasks and control 

commands of the system are globally conducted by the roadside infrastructure and/or the 

transportation management center (TMC) for all CAVs. Some of the major reasons that 



 28 

such coordination is conducted in a centralized manner are that, each CAV in the system 

might not have global information of the system, nor can they conduct computations locally 

that consume large computational power and long computational time. 

In some centralized approaches, tasks and control commands were executed by 

different layers of the centralized controller. A two-layer CAV coordination system at ramp 

was proposed by Schimidt et al. in 1983, which was based on non-linear system dynamics 

behavior [99]. In their system, the higher layer is in charge of the sequence control, while 

the lower layer is in charge of the motion control of vehicles. Ran et al. proposed a similar 

centralized multi-layer automated ramp system and also built a microscopic simulation 

model to validate its characteristics, as well as the designing requirements of the minimum 

ramp length [100]. 

Other than the aforementioned approaches, coordination of CAVs at ramp can also 

be modeled as an optimization problem to be solved by the centralized controller, with the 

aim of minimizing travel time or fuel consumption. Awal et al. proposed an optimization 

problem with the objective of reducing merging time at ramps and thus reducing merging 

bottlenecks [101]. Raravi et al. formulated an optimization problem that aims at 

minimizing the Driving-Time-To-Intersection (DTTI) of vehicles, subject to certain 

constraints for ensuring safety [58]. Rios-Torres et al. presented an optimization framework 

and an analytical closed-form solution that allowed the online coordination of CAVs at on-

ramp merging zones [102]. Xie et al. formulated this case as a nonlinear optimization 

problem and conducted a simulation evaluation with MATLAB and Car2X module in 

VISSIM [103]. 
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3.4.2 Distributed Approaches 

Different from centralized approaches that rely on the roadside infrastructure and/or 

the TMC with infrastructure-to-vehicle (I2V) communication, distributed approaches of 

CAV coordination at ramp control conduct coordination decisions locally among different 

CAVs through vehicle-to-vehicle (V2V) communication. Compared to the centralized 

approaches, the distributed approaches bring several benefits, including reducing 

communication requirements and improving scalability. 

The concept of virtual vehicle coordination at ramps was originated from Uno et 

al. [104]. The proposed approach maps a virtual vehicle onto the highway mainline before 

the actual merging happens, allowing vehicles to perform safer and smoother merging 

maneuvers. Lu et al. applied a similar idea in their proposed systems, where they first 

formulated the merging problems differently with respect to two different geometric 

layouts of the road (i.e., either with or without a parallel lane), and then proposed a speed 

based closed-loop adaptive control method to control the longitudinal speed of merging 

CAVs [105]. 

Besides the virtual vehicle ideas, other distributed approaches were also proposed 

to control the longitudinal motion of CAVs at ramps. Dao et al. proposed a distributed 

control protocol to assign vehicles into vehicle strings in the merging scenario [106]. Zhou 

et al. developed a vehicle trajectory planning method for CAV coordination at ramp, 

formulating the planning tasks of the ramp vehicle and the mainline vehicle as two related 

distributed optimal problems [101]. Wang et al. proposed a distributed consensus-based 

CAV coordination system [107]. Furthermore, agent-based modeling and simulation of the 

proposed CAV coordination system were conducted in game engine Unity3D, and it was 
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compared to human-in-the-loop simulation to evaluate its benefits in terms of mobility and 

sustainability [108], [109]. 
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4 MACROSCOPIC COOPERATION 

4.1 Shared Automated Mobility With Demand-Side Cooperation 

4.1.1 Introduction and Background 

Shared and automated mobility has been prevailing and changing the paradigm of 

next-generation urban transportation systems, leading to disruptive concepts such as 

Mobility-as-a-Service (MaaS) and transportation network companies (TNCs), such as Uber 

and Lyft. TNCs have been efficiently identifying the missing links between demands 

(customers) and supplies (mobility service providers) and bridging them through 

innovative platforms and smartphone apps to facilitate the completion of mobility needs. 

In spite of never-ending criticisms to TNCs such as avoiding government regulations and 

inducing excess traffic demands [110], [111], they keep evolving by providing feasible 

solutions, such as ride-hailing, pooled TNCs, and different tiers of transportation needs 

[112], [113].  

Recently, new car-pooling services emerging in major U.S. cities [5] offer the most 

affordable ride price in exchange for a little walk of customers to/from designated pickup 

and drop-off (PUDO) locations with respect to their origins and destinations. Such 

flexibility in PUDO locations can be considered as a demand-side cooperative strategy. It 

is similar to the travelling salesman problems (TSP) with moving targets, which have been 

explored in the field of operation research for years [114], [115]. Such flexibility in travel 

behaviors of customers may impact overall system efficiency and sustainability [116], such 

as vehicle miles traveled (VMT), emissions, and energy consumption, although the 

emerging on-demand mobility services rely on many other types of studies, such as studies 
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of existing services, stated preference studies, and policy studies [117]. However, whether 

the anticipation holds and how much SAM (shared automated mobility) service will be 

impacted due to the demand-side cooperation is still unknown. To address all the 

challenges mentioned above, or in other words to assess the mobility and sustainability 

impacts of SAM services with demand-side cooperation, this dissertation proposes a 

demand-side cooperative (DC) SAM service optimization model and an open-sourced 

microscopic simulation platform. The DC ride matching is formulated as a capacitated 

vehicle routing problem with repositioning (CVRPR) and is solved by a commercial solver 

(Gurobi). Under the operational constraints, such as SAV seat capacities and maximum 

walking distances, the DC ride matching strategies aims to optimize the overall profit of 

the proposed SAM service, which considers both maximizing the serving rate (to obtain 

more revenue) and minimizing the travel distance, travel time, and energy consumption (to 

reduce the fleet operational cost). The proposed service can potentially benefit the 

customers and the entire transportation system by reducing the detoured portions and dead-

heading time of SAV trips. The proposed DC-SAM is framed in the Simulation of Urban 

MObility (SUMO), an open-source and multi-modal microscopic traffic simulation tool. It 

is capable of modeling not only vehicular traffic dynamics in detail but also customer 

behaviors (including customer–vehicle interactions) via its unique application 

programming interfaces (APIs), i.e., “TraCI” [118]. This enables the proof-of-concept 

study of the proposed DC-SAM service in a dynamic environment where the ride matching 

and repositioning (i.e., re-optimization) are performed continuously as the system evolves 

(e.g., new on-demand ride requests pop up). In addition, a real-world network of New York 
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City (NYC) is coded, and ride demands as well as background traffic are synthesized to 

evaluate the performance of the proposed DC-SAM service. 

On-demand shared mobility has been considered as a cost-effective strategy to 

fulfill transportation demand without compromising traffic congestion, fuel consumption 

and air quality [119]. In particular, ridesharing refers to the rides in a vehicle among 

individual travelers (a driver or customer) whose itinerary is in the proximity of both space 

and time, although the system in which customers may not share the vehicle at the same 

time can also increase congestion. With the emergence of smartphones and the Internet, 

for-hiring pooled services research and development has focused on online ride-matching 

programs as well as real-time traveler information delivery. Thanks to both the rapid 

advances in information and communication technologies and increased concerns for 

contemporary transportation issues (e.g., congestion, environment, and parking), more 

affordable, secure, and accessible Mobility on Demand (MOD) [120], shared ride [121], 

and pooled TNC services have been provided continuously by transportation network 

companies (TNCs) via smartphone apps, such as Uber and Lyft [122]. Based on positional 

elements, Furuhata et al. proposed a systematic classification scheme over the ridesharing 

patterns and discussed some significant challenges and future directions, mainly from the 

perspective of matching agencies [17].  

From a mathematical perspective, the dynamic ridesharing (DRS) problem can be 

categorized into the well-known vehicle routing problem (VRP), or more specifically 

dynamic VRP [123]–[125]. Due to the computational complexity of VRP, a myriad of 

studies has been focused on developing efficient heuristic approaches to solve DRS 

problems under different scenarios [126], [127]. Furthermore, with the introduction of 
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mobile apps and improved services from TNCs, variants of DRS problems have emerged. 

Wang considered a DRS problem where drivers or riders may accept or reject the ride-

matching assignment provided by the system [128]. Simonetto et al. proposed a 

computationally efficient dynamic ridesharing algorithm based on a linear assignment 

problem and federated optimization architecture [129]. In a follow-up study, they examined 

the impacts of cooperation and competition between ridesharing companies through the 

Mobility-as-a-Service (MaaS) platform, and showed that the competition could worsen the 

on-demand mobility service, especially in the presence of customer preferences [130]. To 

improve system efficiency, Coltin and Veloso proposed a heuristic algorithm to coordinate 

ridesharing routes and matching, which may smoothly transfer customers between 

different vehicles [131].  

Most of the aforementioned DRS studies, however, assumed door-to-door services. 

Only a few consider more flexible pickup and drop-off (PUDO) locations, which may 

potentially provide system-wide benefits for the ridesharing service due to the demand 

agglomeration effects [132]. Li et al. developed an enhanced ridesharing system where the 

users may be collectively picked up or dropped off, and the preliminary numerical study 

showed that the proposed system could improve the overall travel time [133]. Zhao et al. 

also relaxed the PUDO location constraints in the ridesharing problem and performed a 

case study in MATLAB [134]. Although the results from these studies were promising, 

their validation was limited to numerical analyses only without considering the dynamic 

nature of the system. Therefore, modeling and evaluation of the proposed DRS system in 

a microscopic traffic simulation environment would be very valuable, which is a focus of 

this dissertation. 
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4.1.2 System Framework 

In transportation research, the performance of emerging mobility technologies and 

services has been evaluated by transportation demand models and traffic simulation tools. 

Macroscopic or mesoscopic simulation models, focusing on the network or link level traffic 

dynamics, may not provide detailed behavior on an individual vehicle or customer basis. 

Agent-based models such as MATSim are able to describe the activities of every agent in 

a large scale, but not the delicate interactions between them (vehicles and customers) or 

the traffic dynamics in a realistic manner. Most of the microscopic simulation tools 

primarily use an old-fashioned vehicle-based paradigm where customers’ behavior in a 

SAM service cannot be well modeled. Some commercial software, such as PTV VISSIM, 

has attempted to extend the capability of its products with MaaS features [135]. However, 

it is very challenging to integrate enough flexibility for demand-side behaviors such as 

movements of pedestrians or customers. To the best of our knowledge, a demand-side 

cooperative shared automated mobility service has never been modeled and evaluated in a 

simulation platform with a realistic roadway network and sophisticated operational 

settings. The proposed demand-side cooperative shared automated mobility (DC-SAM) 

service includes the framework in microscopic traffic simulation and dynamic ride-

matching algorithm. 

4.1.2.1 System Framework in Simulation 

The proposed system [136], built upon a microscopic simulation architecture of 

SUMO with background traffic, consists of a group of customers, a fleet of shared 

automated vehicles (SAVs), and a service coordinator. SUMO has been used for describing 

emerging on-demand shared mobility in several studies [137], [138]. The customer’s 
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demand is generated randomly over the simulation network. The request information is 

sent to the service coordinator, including time stamp, location (with privacy consideration), 

group size, trip origin (if different from the location upon request), and trip destination. As 

the core of the DC-SAM system, the service coordinator keeps collecting the riding 

requests from customers and monitoring the states of SAVs (e.g., location, seat availability) 

as well as network traffic in real time. Then, it determines the optimal ride-matching for 

each customer–SAV pair and the alternative pickup and drop-off (PUDO) locations and 

communicates all this information with designated customers. Once the customers confirm 

the matched SAVs and PUDO locations (which may be mandated by customers or 

suggested by the system and may be different from their trip origins and destinations), the 

service coordinator will deliver walking guidance related to PUDO locations (if applicable) 
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to customers, and itineraries as well as suggested routes to SAVs. The customers follow 

the shortest distance (walkable) paths and the travel times of walking are calculated by the 

lengths of walking paths divided by the constant walking speed (5 kph), which is set in 

SUMO. To this end, customers will proceed until the completion of their trips, and SAVs 

will follow the system’s suggestion (or commands) to provide service. If any SAV 

completes its service round without receiving further requests, it can be re-positioned to 

Figure 4-1 The system framework of demand-side cooperative share automated 

mobility (DC-SAM) service. [136] 
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the suggested location by the service coordinator. The system framework, key components 

(i.e., customers, SAVs, and service coordinator), and associated flowcharts are illustrated 

in Figure 4-1. 

The proposed DC-SAM service operates in an “online” manner in the microscopic 

simulation environment. Upon the start of simulation, the service coordinator collects the 

information from both demand (i.e., customers) and supply (i.e., SAVs) sides. At a certain 

frequency or within a System Optimization Time Window (e.g., every 120 s), the system 

performs cooperative (involving multiple customers and multiple SAVs) optimal ride 

matching, based on up-to-date information on unserved requests and available SAVs. A 

SAV is available for new customer(s) only if the vehicle has delivered to all customers and 

a new system optimization time window reaches. The procedure continues until all 

demands are satisfied, or the simulation ends. From the perspective of a customer (demand-

side), a random number generator (RNG) is coded to reflect the customer’s compliance 

Customer i

SAV s Possible Travel Directions 

with Customer s Pickup

Boundary of Maximum 

Walking Distance

Key Candidate Pickup 

Locations

Possible Walkable 

Routes within Boundary

Figure 4-2 An example illustrating alternative pickup locations. 
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(cooperation) to accept alternative PUDO locations. For example, if the generated random 

number is greater than a threshold, the customer will be cooperative and follow the 

guidance about alternative PUDO locations suggested by the service coordinator. 

Otherwise, the customer will stick to door-to-door service without demand-side 

cooperation. In a more sophisticated mode choice model, many factors, such as walking 

distance penalty, could be considered as one of the future steps in modeling. Once the trip 

itinerary gets confirmed, the customer will move to the pickup location or stay at the origin 

to wait for riding on the matched SAV. When the SAV arrives at the drop-off location, the 

customer will finish the trip instantaneously or walk to his/her own destination. From the 

perspective of a SAV (supply-side), it follows the ride matching plans and recommended 

routes as well as repositioning guidance by the service coordinator, throughout the 

simulation run to provide the proposed DC-SAM service. Re-positioning of SAV to wait 

for potential customers is an interesting research topic, and researchers have investigated 

different strategies and evaluated the energy and mobility impacts [139]. For simplicity, 

the re-positioned locations in this study are chosen based on the information of last round 

service (e.g., the destinations of customers). For a more complicated system, these 

locations may be identified from spatiotemporal predictive analytics of historical SAM 

service demands [140]. It is also noted that the service fleet is considered “automated” 

herein because: (1) parameters of SAVs in simulation have been adjusted to model 

autonomous vehicles (AVs), which are different from background traffic (non-AVs); and 

(2) all SAVs are assumed to perfectly follow all the guidance provided by the system, 

including the re-positioning.  
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4.1.2.2 Alternative PUDO Locations and Ride Matching 

As a critical feature of the proposed DC-SAM service, the alternative PUDO 

locations of the customer’s origin and destination may have multiple candidates depending 

on the maximum walking distance and surrounding network topology. As shown in Figure 

4-2, a customer i is located at the origin and is able to walk from the origin to any place 

along with all directions on the road network within the maximum walking distance (e.g., 

0.5 mile), enclosed by the blue ellipse. Nearby walkable routes are indicated as red solid 

lines along the blocks. Theoretically, any place on the red lines could be considered as an 

alternative location for picking up the customer. However, given all the potential travel 

directions (arrows shown in Figure 4-2) of a SAV while completing the customer’s pickup, 

only a limited number of key candidate locations within the maximum walking distance 

need to be considered. The alternative locations for dropping off in the simulation are 

identified in a similar way. In practice, other factors such as parking restrictions and unsafe 

streets could be considered for determining alternative PUDO locations. In addition, to 

facilitate the modeling of cooperation levels by customers (demand-side), origin and 

destination locations are also included in the candidate PUDO location set. 

The ride matching procedure generates a dispatching plan for SAVs and determines 

the PUDO locations for customers, which is a critical component of the proposed system. 

Optimization models are proposed and implemented in the simulation framework, while a 

heuristic model of ride matching is also introduced in the following section as the baseline 

scenario for comparison. 
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4.1.3 Methodology 

4.1.3.1 Heuristic Model 

This model calculates a ride matching plan according to the spatiotemporal travel 

information of customers and SAVs in a heuristic manner, which has been used in the early 

“door-to-door” deployment of SAM services and supply chains [141]. In this model, a 

spatiotemporal incremental matching algorithm assigns each customer to a SAV and forms 

the service sequence. First, the potential customers are sorted by the ride request time 

ascendingly. The earlier the customer’s request time is, the higher the priority is to be 

served. Then, SAVs are ordered by the route distance to Customer 𝑟 ascendingly. For the 

nearest SAV 𝑣, if it is available, Customer 𝑟 will be matched to SAV 𝑣 and both of them 

are recorded in a customer–SAV mapping dictionary as 𝑀 = {𝑣: [𝑟]}. Otherwise, SAV 𝑣 

cannot serve Customer 𝑟 and the second nearest available SAV 𝑣′ will be checked until 

either all potential customers are assigned, or no SAVs are available. 

From a SAV viewpoint, it could be assigned with several customers (up to its seat 

capacity), e.g., 𝑀 = {𝑣: [𝑟1, 𝑟2, 𝑟3]} for a 3-seat SAV, where the assigned customers are 

ascendingly ordered by the request time. All customers are delivered in the order of pickup. 

The algorithm outputs the mapping dictionary 𝑀 for vehicle routing. With that, a First-

Come-First-Served (FCFS) logic is applied to determine the PUDO sequence of the SAV. 

In addition, all customers have to be picked up first and then delivered in the order listed 

in the customer-SAV dictionary. For instance, for 𝑀 = {𝑣: [𝑟1, 𝑟2, 𝑟3]} , the service 

sequence of SAV 𝑣  is 𝑝(𝑟1), 𝑝(𝑟2), 𝑝(𝑟3), 𝑑(𝑟1), 𝑑(𝑟2),  and 𝑑(𝑟3) , where 𝑝(∙)  and 𝑑(∙) 

denote the SAV’s pickup and drop-off actions, respectively. Based on the sequence, the 
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SAV takes the time-dependent shortest paths (TDSP), which consider the real-time 

network traffic conditions (e.g., link travel times), to connect PUDO locations. 

The main purpose/scope of this heuristic model is to avoid the long customer 

waiting times for all requests (which is considered as one of the major concerns for pooled 

TNCs) rather than to maximize the system profit. The heuristic model is severed as a 

benchmark for comparing with other optimal ride matching models (ODC, Optimization 

Model with Demand-side Cooperation, and ONDC, Optimization Model without Demand-

side Cooperation) proposed in this study. In SUMO, the real-time network traffic condition 

can be accessed via an application programming interface (API) for shortest path finding. 

In the real world, such information can be estimated if a large-scale traffic surveillance 

system is deployed. 

4.1.3.2 Optimization Model With Demand-Side Cooperation (ODC) 

The ride matching optimization with demand-side cooperation is modeled as a 0–1 

binary integer programming problem with a directed graphic structure. In this study, an 

API is developed in Python for the SUMO simulation to solve this ride matching 

optimization problem online using the Gurobi Optimizer, which is an efficient solver for 

integer programming [46]. Before elaborating the model details, parameters and decision 

variables in the optimization are listed in Table 1. Note that 𝑛𝑖(𝑗) may include 𝑂𝑛𝑖(𝑗) or 

𝐷𝑛𝑖(𝑗). Furthermore, 𝐷𝑟
𝑆𝐴𝑉 is a dummy node for the completeness of the network, i.e., to 

connect the final drop-off location of last service round with the origin of new service 

round. Depending on the re-positioning strategy, the cost from 𝐷𝑛𝑖(𝑗)  to 𝐷𝑟
𝑆𝐴𝑉  or from 

𝑂𝑟
𝑆𝐴𝑉 to 𝑂𝑛𝑖(𝑗) may vary. 



 43 

The objective of the ride matching problem is to maximize the profit of the 

proposed DC-SAM service, considering both the revenue (positive) and the travel cost 

(negative) of the SAV fleet. Depending on the SAV availability, each ride request may or 

may not be served within the instant system optimization time window right after the 

request generation. For those ride requests that cannot be served instantly, they will be 

logged in the request list for the ride matching in the future system optimization time 

window. In the simulation, no waiting time tolerance is set for each request, so all the 

requests would be served eventually if the simulation time is long enough. 

The problem is formulated as follows: 

max∑ ∑ ∑ 𝑝𝑟,𝑛𝑖(𝑗) ∙ 𝑦𝑟,𝑛𝑖(𝑗)
𝑁𝑖

𝑗=1

𝑀

𝑖=1

𝑅

𝑟=1

− [∑ ∑ ∑ 𝑐𝑟,𝑂𝑟𝑆𝐴𝑉,𝑂𝑛𝑖(𝑗)
∙ 𝑥𝑟,𝑂𝑟𝑆𝐴𝑉,𝑂𝑛𝑖(𝑗)

𝑁𝑖

𝑗=1

𝑀

𝑖=1

𝑅

𝑟=1

+∑ ∑ ∑ ∑ 𝑐𝑟,𝑂𝑛𝑖(𝑗),𝑂𝑛𝑘(𝑙)

𝑁𝑘

𝑙=1

𝑁𝑖

𝑗=1

𝑀

𝑖,𝑘:𝑖≠𝑘

𝑅

𝑟=1

∙ 𝑥𝑟,𝑂𝑛𝑖(𝑗),𝑂𝑛𝑘(𝑙)

+∑ ∑ ∑ ∑ 𝑐𝑟,𝑂𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

𝑁𝑘

𝑙=1

𝑁𝑖

𝑗=1

𝑀

𝑖,𝑘

𝑅

𝑟=1

∙ 𝑥𝑟,𝑂𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

+∑ ∑ ∑ ∑ 𝑐𝑟,𝐷𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

𝑁𝑘

𝑙=1

𝑁𝑖

𝑗=1

𝑀

𝑖,𝑘:𝑖≠𝑘

𝑅

𝑟=1

∙ 𝑥𝑟,𝐷𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

+∑ ∑ ∑ 𝑐𝑟,𝐷𝑛𝑖(𝑗),𝐷𝑟
𝑆𝐴𝑉 ∙ 𝑥𝑟,𝐷𝑛𝑖(𝑗),𝐷𝑟

𝑆𝐴𝑉

𝑁𝑖

𝑗=1

𝑀

𝑖=1

𝑅

𝑟=1
] 

(4-1) 
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Subject to 

∑ 𝑦𝑟,𝑂𝑛𝑖(𝑗)

𝑅

𝑟=1
≤ 1,   ∀𝑖, 𝑗 

∑ 𝑦𝑟,𝐷𝑛𝑖(𝑗)

𝑅

𝑟=1
≤ 1,    ∀𝑖, 𝑗 

(4-2) 

Each alternative location node, e.g., the 𝑗th alternative location for the 𝑖th request, 

in either Origin (for pickup) set or Destination (for drop-off) set, is visited at most once by 

whichever SAV. 

∑ ∑ 𝑠𝑛𝑖(𝑗) ∙ 𝑦𝑟,𝑂𝑛𝑖(𝑗)

𝑁𝑖

𝑗=1

𝑀

𝑖
≤ 𝐶𝑟

𝑆𝐴𝑉 ,   ∀𝑟 
(4-3) 

For the 𝑟th SAV, the number of pickup nodes visited within the same service round 

(or system optimization time window) should not exceed its associated capacity, 𝐶𝑟
𝑆𝐴𝑉 

∑ ∑ 𝑥𝑟,𝑂𝑟𝑆𝐴𝑉,𝑂𝑛𝑖(𝑗)

𝑁𝑖

𝑗=1

𝑀

𝑖
≤ 1,     ∀𝑟 

(4-4) 

(3) From its origin, the 𝑟th SAV will visit at most one pickup location. 

∑ ∑ 𝑥𝑟,𝑂𝑛𝑖(𝑗),𝑂𝑛𝑘(𝑙)

𝑁𝑖

𝑗=1

𝑀

𝑖:𝑖≠𝑘
+ 𝑥𝑟,𝑂𝑟𝑆𝐴𝑉,𝑂𝑛𝑘(𝑙)

= 𝑦𝑟,𝑂𝑛𝑘(𝑙)
,    ∀𝑘, 𝑙, 𝑟 

(4-5) 

(4) For any SAV, each pickup node has at most one incoming link, which 

equals to 𝑦𝑟,𝑂𝑛𝑘(𝑙)
. 

∑ ∑ 𝑥𝑟,𝑂𝑛𝑖(𝑗),𝑂𝑛𝑘(𝑙)

𝑁𝑘

𝑙=1

𝑀

𝑘: 𝑘≠𝑖
+∑ ∑ 𝑥𝑟,𝑂𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

𝑁𝑘

𝑙=1

𝑀

𝑘

= 𝑦𝑟,𝑂𝑛𝑖(𝑗)
,    ∀𝑖, 𝑗, 𝑟 

(4-6) 
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(5) For any SAV, each pickup node has at most one outgoing link, which equals 

to 𝑦𝑟,𝑂𝑛𝑖(𝑗)
. 

∑ ∑ ∑ 𝑥𝑟,𝑂𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

𝑁𝑘

𝑙=1

𝑁𝑖

𝑗=1

𝑀

𝑖,𝑘
≤ 1,     ∀𝑟 

(4-7) 

(6) After the 𝑟th SAV picks up all the customers in the origin node set, it will 

go to the destination node set. In other words, at most, one link will be set up between the 

origin node set and destination node set. 

∑ ∑ 𝑥𝑟,𝐷𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

𝑁𝑖

𝑗=1

𝑀

𝑖: 𝑖≠𝑘
+∑ ∑ 𝑥𝑟,𝑂𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

𝑁𝑖

𝑗=1

𝑀

𝑖

= 𝑦𝑟,𝐷𝑛𝑘(𝑙)
,    ∀𝑘, 𝑙, 𝑟 

(4-8) 

(7) For any SAV, each drop-off node has at most one incoming link, which 

equals to 𝑦𝑟,𝐷𝑛𝑖(𝑗)
 

∑ ∑ 𝑥𝑟,𝐷𝑛𝑖(𝑗),𝐷𝑛𝑘(𝑙)

𝑁𝑘

𝑙=1

𝑀

𝑘: 𝑘≠𝑖
+ 𝑥𝑟,𝐷𝑛𝑖(𝑗),𝐷𝑟

𝑆𝐴𝑉 = 𝑦𝑟,𝐷𝑛𝑖(𝑗)
,   ∀𝑖, 𝑗, 𝑟 

(4-9) 

(8) For any SAV, each drop-off node has at most one outgoing link, which 

equals to 𝑦𝑟,𝐷𝑛𝑖(𝑗)
. 

∑ 𝑦𝑟,𝑂𝑛𝑖(𝑗)

𝑁𝑖

𝑗=1
≤ 1,      ∀𝑖, 𝑟 

(4-10) 

(9) For any SAV and any request, there is at most one alternative pickup 

location selected. 



 46 

∑ 𝑦𝑟,𝐷𝑛𝑖(𝑗)

𝑁𝑖

𝑗=1
≤ 1      ∀𝑖, 𝑟 

(4-11) 

(10) For any SAV and any request, there is at most one alternative drop-off 

location selected. 

4.1.3.3 Optimization Model Without Demand-Side Cooperation (ONDC) 

To demonstrate the benefits of demand-side cooperation, a similar ride matching 

optimization problem to ODC is formulated without considering any alternative PUDO 

locations besides the origin and destination specified by the customer (i.e., “door-to-door” 

service). In other words, the Optimization Model without Demand-side Cooperation 

(ONDC) can be considered as a special case of ODC where both 𝑗’s and 𝑙’s in Equations 

(4-1)–(4-10) are reduced to 1. 

4.1.4 Case Study 

The service performance metrics defined in Table 4-1 are directly computed from 

simulation results, such as trace data, vehicle stops, customer loading data, and service 

operation plans. They may describe the level of service, mobility efficiency of SAV fleet, 

and customers’ cooperation efforts, which encompass vehicle miles traveled (VMT), 

vehicle hour traveled (VHT), trip detour factor (TDF), customer waiting time (CWT), 

customer walking time (WKT), and customer walking distance (WKM). It is noted that 

TDF can be considered as a surrogate metric to evaluate the customer’s loss (in terms of 

travel distance) due to the shift from a dedicated service to a ridesharing service. Besides 

that, vehicle energy consumption (VEC) indicates the energy and/or fuel consumed by the 

SAV fleets serving all the shared riders or customers in the system. In this study, the fuel 

consumption and tailpipe emissions are estimated by SUMO, based on the Handbook 
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Emission Factors for Road Transport (HBEFA) where a typical gasoline-powered light-

duty vehicle model is adopted. 

Table 4-1 Key service performance metrics. 

Metric

s 

Unit Description 

VMT Vehicle-

mile 

Vehicle miles traveled 

VHT Vehicle-

hour 

Vehicle time traveled in hour 

TDF - Trip detour factor: customer’s actual trip distance under the 

pooled TNC service divided by the trip distance with dedicated 

service (based on the time-dependent shortest path). 

CWT Second Average customer’s waiting time; waiting time for the matched 

vehicle moving to the pickup location and picking the customer 

up. 

WKT Second Customer’s time spent on walking to/from alternative PUDO 

locations with respect to the origin and destination. 

WKM Mile Customer’s walking distance to/from alternative PUDO 

locations with respect to the origin and destination. 

VEC Liter 

(gasoline) 

Vehicle energy/fuel consumption for serving all customers. 

The proposed demand-side cooperative shared automated mobility service (DC-

SAM) simulation was implemented and studied in SUMO with the New York City (NYC) 

network (see Figure 4-3). The Open Street Map (OSM) provides the detailed roadway 

network and default traffic signal plans in the region, which is imported in the SUMO 

platform. Shared automated vehicles (SAVs), SAV routes, background traffic, and 

movements of customers (either waiting or on-board) are illustrated in Figure 4-3. 
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The SAM demand was extracted from a New York City Taxi and Uber Trips study 

[142], which provided a vast amount of individual taxi trips in the city from January 2009 

to June 2015. In this section, a small sample from one taxi company’s trip data on 1 June 

2015 was selected. The original information of each trip includes pickup and drop-off 

(PUDO) locations, PUDO times, customer counts, vendor information, and transaction 

data (i.e., fare). In the simulation, a total of 140 trips were selected as the baseline SAM 

demand and synthesized according to the PUDO locations (as the surrogates of 

origins/destinations) and pickup time (as the surrogate of request time). 

Figure 4-3 SUMO (Simulation of Urban Mobility) for the New York City network. 
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Four vehicles with three available seats (i.e., the maximum occupancy per vehicle 

is 3) were set as the SAV fleet to serve the SAM demand over the network. These SAV 

behaviors were finetuned in the SUMO simulation by adjusting the driver imperfection 

indicator to be 0 (i.e., perfect driving), and setting the desired time headway to be 1.5 s, 

which is different from the background traffic of human-driven vehicles (i.e., 2 s). At the 

beginning of the simulation, these SAVs were assigned to random locations and got ready 

for the execution of different ride matching models: 1) heuristic matching; 2) optimal 

matching without demand-side cooperation (ONDC); and 3) optimal matching with 

demand-side cooperation (ODC). Within every system optimization time window, the 

service coordinator monitored available SAVs and unserved demands, based on which a 

designated pickup/drop-off plan was calculated depending on the selected ride matching 

models. For the optimization models (ODC and ONDC), a high enough revenue (10,000 

units, a unit = 1 dollar or mile) was set to incentivize SAVs to serve as many demands as 

possible. The travel cost from one place to another is proportional to the route distance of 

the least-duration path, which depends on the time-varying traffic conditions. After ride 

matching, the designated SAV would move to pick up and drop off customers according 

to the assigned itinerary. To guarantee that the demand can be served exhaustedly, a long 

enough simulation horizon (60,000 steps) was used. In addition, background traffic 

randomly generated at the rate of one trip per second was introduced into the simulation 

network uniformly over time. The computing platform to conduct the simulation is set up 

as follows: CPU—Intel i7 8700; GPU—Nvidia 1660 ti; OS—Windows 10 version 1909; 

SUMO 1.2.0; and Gurobi 8.1.1. 
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It is noted that a small-scale (in terms of optimization problem) test was presented 

in this section to prove the concept (i.e., to demonstrate the proposed DC-SAM service). A 

major concern is computational efficiency. It is well known that off-the-shelf optimization 

solvers are not able to address instances with roughly more than 10 vehicles for pooled 

TNC services with floating targets. In this study, the seat capacity was selected as 3 to be 

consistent with the setting of a small vehicle. Our trial and error tests showed that four 

vehicles with capacity of 3 seemed to reach the computational limitation that the Gurobi 

optimization solver could handle. In addition, the number of alternative PUDO locations 

would impact the computational time. In this study, each origin or destination of the request 

in the simulation study has up to 4 alternative locations, including itself. The computational 

efficiency problem may be solved by more efficient algorithms or more powerful high-

performance computing (HPC), which is out of the scope of this work and will be another 

important future research direction.  

4.1.4.1 Determination of System Optimization Time Window 

System optimization time window refers to the time interval when all the updated 

information about riding requests and SAV statuses would be collected for the service 

coordinator to perform the ride matching. It is considered as one of the most critical 

parameters that governs the tradeoff between SAM performance and computational 

efficiency. Sensitivity analyses on this parameter have been conducted to evaluate its 

impacts. As shown in Table 3, if the time window is short (e.g., 1 s), the service coordinator 

can respond to the ride request instantly as long as there is any SAV available. This may 

result in higher overhead in computational time and sub-optimality in terms of system 

performance because there are less opportunities for SAVs to coordinate with each other 
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for serving the customers. On the other hand, if the time window is too long (e.g., 500 s), 

many more customers and vehicles will be considered in the optimization which may lead 

to significant computational burden for the Gurobi Optimizer and unsatisfactory customer 

experience. In addition, due to the change in traffic dynamics, a longer time window might 

not guarantee better system performance. 

It turns out that for the test scenarios (i.e., 140 SAM trips, 4 SAVs with 3 seats 

capacity per vehicle, and the given background traffic), the “best” system optimization time 

window is 120 s in terms of the majority of performance metrics listed in Table 4-2, such 

as VMT, VHT, TDF, VEC, and CPU time (in second). For other parameters, e.g., CWT, 

WKT, and WKM, the values for the 120 s case are comparable to the others. Therefore, in 

the following simulation studies, the system optimization time window is set as 120 s. 

Table 4-2 Sensitivity analysis results on system optimization time window 

4.1.4.2 Comparison of Different Ride Matching Strategies 

The comparative simulation results across all different ride matching strategies, i.e., 

heuristic, ONDC, and ODC are shown in Table 4-3. From the SAV (or supply-side) 

perspective, both optimal strategies (ONDC and ODC) can remarkably reduce VMT, VHT, 

 
500 s 300 s 240 s 180 s 120 s  60 s 1 s 

VMT (vehicle-

mile) 

302 309 293 289 283 304 293 

VHT (vehicle-

hour) 

31.2 30.1 28.8 28.2 27.9 28.1 28.4 

TDF 4.5 4.69 4.61 4.55 4.09 4.64 4.46 

CWT (s) 869 836 806 745 817 779 846 

WKT (s) 468 479 414 474 476 429 513 

WKM (mile) 0.48 0.49 0.45 0.49 0.49 0.46 0.52 

VEC 101.1 96.3 90.0 91.6 82.2 103.8 88.7 

CPU Time 

(103) 

18.3 12.0 11.4 14.1 9.0 11.7 12.1 
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VEC, and tailpipe emissions in the range of 43.4 to 53.3%, which indicates that the 

optimization algorithms are much more efficient and sustainable in terms of serving SAM 

demands with respect to the heuristic strategy. In addition, the proposed ODC strategy can 

further improve the shared mobility performance compared to the ONDC strategy. For 

example, the scenario with ODC can reduce VMT and VHT by 4.3 and 4.5%, respectively, 

compared to the scenario with ONDC. In terms of environmental sustainability, demand-

side cooperation can help further drop down the fuel consumption and pollutant emissions 

in the range of 2.2–5.0%. 

From the customer (demand-side) perspective, the results show that even without 

demand-side cooperation, the optimal ride matching algorithm can significantly decrease 

both TDF (by up to 55.7%) and CWT (by up to 32.2%), compared to the heuristic model. 

The ODC strategy can further reduce TDF by 8.1% compared to the ONDC strategy. It is 

hypothesized that the scenario with ODC strategy may further reduce the possibility of 

SAV route detour due to the demand-side cooperation. The average CWTs for both 

optimization scenarios are comparable (about 13 min), which are a bit higher than those 

from TNC waiting time studies due to the sparsity of both demands and supplies in the 

large urban network in this proof-of-concept study. 
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Table 4-3 Simulation results for three strategies 

Strategy Performance Metrics 

VMT VHT TDF CWT VEC 

(L) 

CO2(

kg) 

CO(k

g) 

HC(g

) 

NOx(

g) 

PMx(

g) 

Heuristi

c 

605.4 51.6 9.24 1159 155.3 361.2 9.33 50.4 150.6 7.06 

ONDC 295.6 29.2 4.45 786 86.5 201.1 6.00 31.9 85.7 4.14 

ODC 283.0 27.9 4.09 817 82.2 191.1 5.87 31.1 81.5 3.96 

ONDC 

vs. 

Heur. 

−51.

2% 

−43.

4% 

−51.

8% 

−32.

2% 

−44.

3% 

−44.

3% 

−35.

7% 

−36.

7% 

−43.

1% 

−41

.4% 

ODC vs. 

Heur. 

−53.

3% 

−45.

9% 

−55.

7% 

−29.

5% 

−47.

1% 

−47.

1% 

−37.

1% 

−38.

3% 

−45.

9% 

−43

.9% 

ODC vs. 

ONDC 

−4.3

% 

−4.5

% 

−8.1

% 

3.9% −5.0

% 

−5.0

% 

−2.2

% 

−2.5

% 

−4.9

% 

−4.

3% 
 

4.1.4.2 Comparison of Different SAM Service Demand 

To inspect the sensitivity of system performance with respect to SAM service 

demands, simulation runs with different numbers of requests (where the seat capacity is 3), 

i.e., 20 trips, 60 trips, and 140 trips (benchmark), were tested and the results are shown in 

Table 4-4. It can be observed that the performance metrics fluctuate within an acceptable 

range, which provides some evidence for the system robustness. 

As SAM service demand increases, VMT, VHT, and environment-related metrics 

(such as VEC and tailpipe emissions) increase correspondingly under the same supply 

capability as expected. For TDF, an apparent decline trend can be seen as the demand level 

increases. A hypothesis is that higher chances to coordinate the PUDO demands would be 

anticipated in system optimization with the increase of requests. For other metrics, 

including CWT, WKT, and WKM, no monotonic patterns (either decrease or increase) are 

observed, which may be caused by random trip OD locations in such a sparse demand–

supply scenario. 
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Table 4-4 Simulation results for ODC (Optimization Model without Demand-Side 

Cooperation) scenarios with different demand levels 

Metrics 20 trips 60 trips 140 trips 

(Benchmark) 

VMT (vehicle-

mile) 

58.34 133.74 283.0 

VHT (vehicle-hour) 8.30 15.25 27.9 

TDF 4.53 4.26 4.09 

CWT (s) 800 854 817 

WKT (s) 480 464 476 

WKM (mile) 0.48 0.47 0.49 

VEC (L) 27.1 51.1 82.2 

CO2 (kg) 63.0 118.9 191.1 

CO (kg) 2.54 4.43 5.87 

HC (g) 13.0 22.8 31.1 

NOx (g) 27.4 51.3 81.5 

PMx (g) 1.41 2.59 3.96 

4.1.4.3 Comparison of Different Vehicle Capacity 

Vehicle capacity is another vital operational parameter that can impact the service 

performance. The sensitivity analysis may provide some insight for early deployment of 

the proposed DC-SAM service with suitable vehicle size. Different seat capacities of SAVs 

(i.e., 1, 2, and 3 seats) were examined and the results are shown in Table 4-5. Please note 

that all simulation scenarios here assume 140 trips, 120 s system optimization time 

window, and 4 SAVs. 

According to the simulation results, as the seat capacity grows, most performance 

measures, such as VMT, VHT, VEC, and pollutant emissions, decrease due to the 

improvement of supply-side capability and potential system efficiency with optimal ride-

matching. Others, e.g., TDF, CWT, WKT, and WKM, increase due to more cooperative 

efforts being required from the customer side. In particular, for those scenarios with “1 

seat”, the situation can be considered as the automated “car-sharing” service dedicated to 

single origin-destination pair. When comparing “1-seat” scenarios with the benchmark 
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pooled TNC services (i.e., “3-seat” scenarios), the experiment results indicate that VMT, 

VHT, and environment-related metrics increase by the range of 48.4–71.4%, but those 

demand-side related metrics (including TDF, CWT, WKT and WKM) get reduced by the 

range of 12.2–45.5% due to more dedication to the service. 

Table 4-5 Simulation results for ODC in different seat capacities 

Metrics. 1 seat 2 seats 3 seats (Benchmark) 

VMT (vehicle-mile) 427.5 345.8 283.0 

VHT (vehicle-hour) 43.4 33.4 27.9 

TDF 2.53 3.49 4.09 

CWT (second) 445 627 817 

WKT (second) 384 399 476 

WKM (mile) 0.43 0.44 0.49 

VEC (liter) 122.0 103.2 82.2 

CO2 (kg) 283.7 240.0 191.1 

CO (kg) 10.06 7.94 5.87 

HC (g) 52.3 41.5 31.1 

NOx (g) 122.3 102.6 81.5 

PMx (g) 6.12 5.05 3.96 

4.1.5 Summary 

In this study, a demand-side cooperative shared automated mobility (DC-SAM) 

service framework was developed to allow the customers (i.e., demand-side) to relax their 

pickup and drop-off (PUDO) locations for improving the overall system efficiency (e.g., 

reducing the detouring effects of SAVs at the cost of very limited walking loads from 

customers). The problem was formulated as a binary integer programming and solved by 

using Gurobi, a commercial optimization solver. The model was implemented in an 

innovative SUMO-based SAM simulation platform which enables optimal ride matching 

in an online manner via application programming interfaces (APIs). Results from the 

preliminary simulation study indicated that the proposed system can significantly reduce 

the SAV’s operating costs in terms of vehicle-miles traveled (VMT), vehicle-hours 

traveled (VHT), vehicle energy consumption (VEC), and other pollutant emissions, and 
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improve the quality of service by reducing the customer waiting time (CWT) and trip 

detour factor (TDF), compared to the heuristic algorithm. For example, according to Table 

4-5, VMT, VHT, and VEC can be reduced by 53.3, 45.9 and 47.1%, respectively, and CWT 

and TDF decrease by 29.5 and 55.7%, respectively, when using the proposed ODC 

strategy. In addition, the simulation study showed that more benefits can be obtained by 

enabling the cooperative efforts from customers under the optimal ride matching strategies 

with demand-side cooperation. The range of mobility and environmental benefits may vary 

from 2.2 to 8.1%, depending on the specific metrics. Based on the unique microscopic 

traffic simulation platform built in this study, we extensively evaluated the proposed 

system under a variety of settings, such as the number of service requests and SAV’s 

maximum occupancy. It should be noted that the developed microscopic platform can lay 

a good foundation for further pursing research related to multi-modal operation (e.g., 

curbside management) and applications of emerging transportation technologies (e.g., 

connected and automated vehicles) 

4.2 Fleet Dispatching Strategy for Battery-Electric Trucks (BET) 

4.2.1 Introduction and Background 

Over the last decade, significant progress has been made on vehicle fleet 

electrification, especially for light-duty vehicles. Recently, there have been increasing 

interest in electrifying medium-duty and heavy-duty vehicles. For instance, heavy-duty 

battery-electric trucks (BETs) have been successfully demonstrated in drayage application. 

Now, there are efforts to demonstrate the use of these trucks in regional distribution and 

other applications. 
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BETs operating in the regional distribution application will return to home base 

daily and can be charged overnight. However, due to their limited range and long charging 

time, care must be taken when planning the routes and schedules of these trucks. The fleet 

must ensure that the route distance does not exceed the expected range of the BET. If it is 

necessary to assign a BET to serve a route with distance longer than the expected range, an 

en-route charging station needs to be identified and the required charging time needs to be 

included in the schedule. Similarly, if it is necessary to assign a BET to serve multiple 

routes in the day, required charging times between consecutive routes need to be included 

in the schedule to ensure that the BET can return to the depot before its battery is fully 

depleted. 

Originated from the traveling salesman problem (TSP), the problem of dispatching 

vehicles for delivery of items has been investigated for decades in the field of operation 

research. TSP, an NP-hard problem in combinatorial optimization, aims to find the shortest 

distance loop among multiple locations. Despite the complexity, many existing methods 

are able to solve the problem efficiently, such as [115], [143]. Later, as an extension of 

TSP, the vehicle routing problem (VRP) is also well studied. Instead of a single salesman 

searching an optimal route, VRP considers the routing of multiple vehicles cooperatively, 

which is very close to our routing and scheduling problem. Therefore, in this section, we 

briefly review the studies by firstly combing the variations of VRP, and then introducing 

the major methods of solving VRP. 

The majority of the real-world logistics problems are often more complex than the 

classical VRP [10]. Therefore, studies of VRP usually try to extend the classical VRP by 

adding further constraints. For instance, the capacitated vehicle routing problem (CVRP) 
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is defined by adding the carrying capacity limitation of the vehicles [11], and the vehicle 

routing problem with time windows (VRPTW) is defined by adding the scheduled time 

window of each customer [12]. Also, VRP with pickup and delivery (VRPPD) studies the 

scenario that customers may request services with pickup and delivery [13]. With the 

electrification of the vehicle fleet, more and more research turns to the topic of the “electric 

vehicle routing problem” (E-VRP) and its extensions. For E-VRPs, the possibility of 

recharging at available charging stations is considered such as [14]–[16]. However, the 

charging strategy enormously increases the complexity of the problem, and a certain level 

of simplification is conducted in the existing works. 

Considering the complexity of the VRP, an essential goal of the algorithm design 

is to balance the computation time and the optimality of the solution. The metaheuristic 

algorithms and heuristic algorithms are most commonly used to save the computational 

load. For example, Bard et al. proposed a branch and cut algorithm [144] to solve the VRP 

formulated with a mixed-integer linear programming problem. An adaptive large 

neighborhood search (ALNS) algorithm was proposed by Keskin et al. for the E-VRP with 

partial recharging strategies [145]. Simulated annealing (SA) and genetic algorithm (GA) 

approaches were applied by Omidwar et al. to minimize travel distances, time, and 

emissions [146]. Rizzoli et al. utilized ant colony optimization (ACO) and validated the 

performance with real-world data [147]. Combining GA, large neighborhood search 
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(LNS), local search and dynamic programming (DP), Hiermann et al. proposed an 

algorithm for the problem with the mix of internal-combustion engine vehicles (ICEVs), 

electric vehicles (EVs), and plug-in hybrid electric vehicles (PHEVs) [148].  

4.2.2 Problem Formulation 

On each operation day, a set of customers would schedule services for pickup and 

delivery as shown in blue circles and triangles. The same indices of the locations denote 

the request from an identical customer. The green box denotes the home base of a fleet of 

BETs, where a charging station is deployed at the home base to ensure the overnight 

charging.  The BETs should start from and return to the home base within the working 

Figure 4-4 Graph model (the arcs within set V and set C are omitted, the arcs 

between set V and set C are simplified). 
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hours. Also, there could be a few charging stations located around the operation region. To 

extend the range of BETs, opportunistic charging is allowed. Also, the opportunistic 

charging is set to be flexible to support the partial charging strategy. It should be noted that 

with the change of route and schedule, the average speed, travel time, and energy 

consumption from one location to another will change accordingly because of the weight 

of the goods and the real-time traffic condition. The proposed problem setup is defined as 

the “electric vehicle routing problem with pickup and delivery, time windows, and partial 

recharge” (EVRP-PD-TW-PR). If we consider all the key locations as nodes and the routes 

between nodes as bidirectional links, we can construct a graph model [149], [150] as shown 

in Figure 4-4. 

We define node O to be the home base where the BETs departure from, while node 

D denotes the same home base where the BETS return. i is an index of a customer, and Vi 

is a set that contains the pickup and delivery nodes of customer i. The union of all customers 

set is named set V. j is an index of a charging station, and Cj denotes the charging station 

j. Also, the charging stations have multiple dummy notes marked by prime as each charging 

station can be visited multiple times. The union of all charging states with their dummy 

notes is named set C. The goal of the study is to generate itineraries for the BETs including 

the specific routes and schedules that could make the whole fleet of vehicles operating in 

an optimal or near-optimal manner. 

Next, to formulate the optimization problem mathematically, the variables are 

defined in Table 4-6. The variables can be categorized into three types including system 

input, intermediate variables, and decision variables. The system inputs are the variables 

that are given before solving the problem. The intermediate variables are those who would 
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be updated while searching for the solution. The decision variables determine the final 

itineraries for the fleet of the BETs. 

Table 4-6 Variable definitions 

Type Variable Name Description 

System 

Input 

M Number of BETs Number of BETs 

𝑘𝑖 Node type 1 if charging station, 0 if 

customer 

𝑞𝑖 Cargo weight Positive if pickup, negative if 

delivery 

𝐿𝑖 Loading/ unloading 

time 

Time spend at node i 

𝑇𝑊𝑖 = [𝑒𝑖, 𝑙𝑖] Time window Scheduled time by customer i 

𝑊𝑚 BET capacity The maximum carrying capacity 

for BET m 

𝐵𝑚 Maximum SOC The maximum battery capacity 

for BET m 

𝑇𝑂 Earliest departure time The earliest time the BETs can 

leave from the home base 

𝑇𝐷 Latest return time The latest time the BETs should 

return to the home base 

𝑅𝑐 Charging cost rate Cost for recharging in $/kWh 

𝑅ℎ Labor cost rate Salary for the drivers, $/hr. 
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𝑅𝑒𝑖 Early penalty rate Cost rate in $/hr., if vehicle arrive 

earlier than the scheduled time by 

customer i 

𝑅𝑙𝑖 Late penalty rate Cost rate in $/hr., if vehicle 

arriver later than the scheduled 

time by customer i  

Interme

diate 

Variabl

e 

𝜏𝑖𝑚 Arrival time Arrival time for BET m at node i 

𝑤𝑖𝑚 Current load Current load for BET m at node i 

𝑦𝑖𝑚 Current SOC Current SOC for BET m at node i 

𝑡𝑖𝑗𝑚 Travel time Estimated travel time for BET m 

from node i to node j 

𝐸𝑖𝑗𝑚 Energy consumption Estimated electricity consumption 

for BET m from node i to node j 

Decisio

n 

Variabl

e 

𝜏0𝑚 Actual departure time The actual time the BET m leaves 

from the home base 

𝑥𝑖𝑗𝑚 Node level route 0 if the route from i to j is not 

visited by BET, 1 otherwise 

𝑝𝑖𝑚 Charging Rate Three values for slow, regular, 

and super charging 

𝑌𝑖𝑚 Finish charging SOC The SOC when BET m leaving 

charging station i 

The optimization problem is defined by the equations (4-13)-(4-31), aiming to 

minimize the overall operation cost of one day. The objective function has three parts, 
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including energy consumption cost, labor cost, and time window penalties. Though, the 

time window constraints are formulated as soft constraints. Constraint (4-14) enforces the 

connectivity of the costumers and constraint (4-15) assures the connectivity of the charging 

stations. Constraints (4-16) and (4-16) make sure all the BETs should depart from and 

return to the home base. Constraint (4-17) defines the conservation law that guarantees the 

number of incoming arcs to each node equal to the number of outgoing arcs. Constraint (4-

18) makes sure that one customer’s pickup and delivery requests are served by an identical 

BET, and the pickup should finish before the delivery for the same customer. (4-19)-(4-

21) regulate time-related constraints. Among them, constraint (4-20) defines how the 

intermediate variable 𝜏𝑖𝑚  updated while searching. (4-20) and (4-21) narrow down the 

working hours. Constraint (4-23) defines the update logic for the BETs’ loading status, and 

constraint (4-24) and (4-25) specify the initial cargo weight and the cargo weight limit 

while running. Similarly, (4-26)-(4-30) are SOC-related constraints. It should note that 𝑝𝑖𝑚 

is a three-value discrete variable which indicates the charging rate according to three 

different charging types. Finally, we define 𝑥𝑖𝑗𝑚  as a binary variable to indicate the 

selection of the routes. 

min ∑ 𝐸𝑖𝑗𝑚𝑥𝑖𝑗𝑚𝑅𝐶
𝑖∈(𝑂∩𝑉∩𝐶),𝑗∈(𝐷∩𝑉∩𝐶),𝑚∈𝑀

 

+ ∑ 𝑡𝑖𝑗𝑚𝑥𝑖𝑗𝑚𝑅ℎ
𝑖∈(𝑂∩𝑉∩𝐶),𝑗∈(𝐷∩𝑉∩𝐶),𝑚∈𝑀

+ ∑ (𝑌𝑖𝑚 − 𝑦𝑖𝑚)/𝑝𝑖𝑚
𝑖∈𝐶,𝑗∈(𝑉∩𝐶),𝑚∈𝑀

∙ 𝑥𝑗𝑖𝑚𝑅ℎ 

+ ∑ [𝑅𝑒 ∙ 𝑚𝑎𝑥(0, 𝑒𝑖 − 𝜏𝑖𝑚) + 𝑅𝑙 ∙ 𝑚𝑎𝑥(0, 𝜏𝑖𝑚 − 𝑙𝑖)]

𝑖∈𝑉,𝑚∈𝑀

 

(4-13) 
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subject to: 

a) Graph Constraints 

∑ 𝑥𝑖𝑗𝑚
 𝑗∈(𝐷∩𝑉∩𝐶),𝑚∈𝑀 

= 1, ∀𝑖 ∈ (𝑂 ∩ 𝑉) (4-14) 

∑ 𝑥𝑖𝑗𝑚
 𝑗∈(𝐷∩𝑉∩𝐶)

≤ 1, ∀𝑖 ∈ 𝐶,𝑚 ∈ 𝑀 (4-15) 

    

∑ 𝑥𝑖𝑗𝑚
 𝑗∈(𝑉∩𝐶)

= 1, ∀𝑖 ∈ 𝑂,𝑚 ∈ 𝑀 (4-16) 

∑ 𝑥𝑖𝑗𝑚
 𝑖∈(𝑉∩𝐶)

= 1, ∀𝑗 ∈ 𝐷,𝑚 ∈ 𝑀 (4-17) 

∑ 𝑥𝑖𝑗𝑚
𝑖∈(𝑂∩𝑉∩𝐶)

= ∑ 𝑥𝑗𝑞𝑚
𝑞∈(𝐷∩𝑉∩𝐶)

, ∀𝑗 ∈ (𝑉 ∩ 𝐶),𝑚 ∈ 𝑀 (4-18) 

∑ 𝑥𝑖𝑃𝑠𝑚
 𝑖∈(𝑂∩𝑉∩𝐶)

= ∑ 𝑥𝑗𝐷𝑠𝑚
 𝑗∈(𝑉∩𝐶)

, ∀𝑉𝑠 ∈ 𝑉, 𝑠 ∈ 𝑉,𝑚 ∈ 𝑀 (4-19) 

b) Time constraints 

𝜏𝑗𝑚 = (𝜏𝑖𝑚 + 𝑡𝑖𝑗𝑚 + (1 − 𝑘𝑖)𝑠𝑖 + 𝑘𝑖 ∙
𝑌𝑖𝑚 − 𝑦𝑖𝑚
𝑝𝑖𝑚

)𝑥𝑖𝑗𝑚, ∀𝑖

∈ (𝑂 ∩ 𝑉 ∩ 𝐶),𝑚 ∈ 𝑀 

(4-20) 

𝜏𝑂𝑚 ≥ 𝑇𝑂 (4-21) 

𝜏𝐷𝑚 ≤ 𝑇𝐷 (4-22) 

c) Load constraints 

𝑢𝑗𝑚 = (𝑤𝑖𝑚 + 𝑞𝑖)𝑥𝑖𝑗𝑚, ∀𝑖 ∈ (𝑂 ∩ 𝑉 ∩ 𝐶),𝑚 ∈ 𝑀 (4-23) 

𝑢𝑂𝑚 = 0 (4-24) 
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0 < 𝑢𝑖𝑚 ≤ 𝑊𝑚 (4-25) 

d) SOC constraints 

𝑦𝑗𝑚 = ((1 − 𝑘𝑖) ∙ 𝑦𝑖𝑚 + 𝑘𝑖 ∙ 𝑌𝑖𝑚 − 𝐸𝑖𝑗𝑚) 𝑥𝑖𝑗𝑚 (4-26) 

0 < 𝑦𝑖𝑚 ≤ 𝐵𝑚 (4-27) 

𝑦𝑖𝑚 < 𝑌𝑖𝑚 ≤ 𝐵𝑚 (4-28) 

𝑝𝑖 = 𝑝1 𝑜𝑟 𝑝2 𝑜𝑟 𝑝3 (4-29) 

𝑦𝑂𝑚 = 𝐵𝑚 (4-30) 

e) Variable constraints 

 𝑥𝑖𝑗𝑚 = 0 𝑜𝑟 1 (4-31) 

4.2.3 Methodology 

VRP is NP-hard and computationally challenging to find optimal or near-optimal 

solutions [5]. This is because during real-world dispatch operations, there are many 

continuous decision variables such as partial charging and flexible departure times. To 

solve this in a computationally efficient manner, a bi-level hierarchy method has been 

proposed in the section. In the first level, continuous variables are frozen (i.e., discretized) 

to narrow down the searching space of the problem. Thereafter, a metaheuristic method, 

the Ant Colony Optimization (ACO) algorithm (first proposed by [1]), is applied to 

calculate a near-optimal solution. In the second level, the variables that were frozen in the 

previous level are fine-tuned around the near-optimal solution from ACO. 

4.2.3.1 Coarse Scheduling 

Coarse scheduling is done using the ACO algorithm. Inspired by the ant foraging 

behavior that the optimal path (usually shortest) can be gradually constructed by the 
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convergence of the ant pheromone trail, the algorithm is used to find the optimal path along 

a graph. When a group of ants forage, they explore randomly at the beginning. The ants 

lay pheromone along the path they walk once they find paths to food, and the pheromone 

on the path can arouse the interest of other ants and increase the probability of exploring 

that path. This positive feedback loop will eventually result in a path with the highest 

quantities of pheromone, and such a path is near-optimal. 

The ACO algorithm has been proved to be a very efficient algorithm to solve VRP 

[13]. However, departure time and recharging strategy are the two continuous decision 

variables that extraordinarily increases the searching efforts. So, the departure times were 

discretized into multiple instances within a fixed interval, e.g. 8 AM, 10 AM, and so on. 

Additionally, the charging strategy is set to charge back to 100% battery capacity and does 

not change. Then, the ACO algorithm is iteratively applied a relatively small data set as 

described above. 

The ACO algorithm has two major stages at each iteration - searching and updating. 

Initially, a number of ants are released to “explore the graph” randomly. During searching 

a feasible searching space is determined based on the current locations and the values of 

the intermediate variables. Then, the possibilities of visiting the feasible nodes to be 

explored can be calculated based on the existing pheromone level defined by (4-32). 

𝑝(𝑖,  𝑗) =
𝜏(𝑖,  𝑗)𝛼𝜂(𝑖,  𝑗)𝛽

∑𝜏(𝑖,  𝑗)𝛼𝜂(𝑖,  𝑗)𝛽
 (4-32) 

where (𝑖,  𝑗) depicts the arc from node 𝑖 to node 𝑗; 𝜏(𝑖,  𝑗) is the current pheromone value 

of this arc; and  𝜂(𝑖,  𝑗) is a heuristic term defined by the a priori. For example, it can be 

defined as 1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) to attract ants searching the closest node. 𝛼 and 𝛽 are two 
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variables to balance the importance between the pheromone and the heuristic term. The 

denominator is applied to normalize the overall value from 0 to 1. Based on these visitation 

possibilities, each ant decides its next visiting node using the roulette strategy. 

 Once the solution for the current iteration obtained, the algorithm goes to the 

updating stage. Based on the decisions, we update the values of the intermediate variables 

and the pheromone level. The pheromone updating strategy shows as follows: 

𝛥𝜏 =  ∑𝑄/𝑐𝑜𝑠𝑡

𝑞

1

 (4-33) 

𝜏(𝑡 + 1) = (1 − 𝜌)𝜏(𝑡) + 𝛥𝜏  (4-34) 

where the cost in equation (4-33) is the objective of our optimization problem defined as 

(4-13); Q is the predefined pheromone increasing rate; q is the number of ants that find the 

feasible route in current iteration; 𝜌 is the evaporation rate, which is applied to avoid the 

searching process being trapped into local optima. To increase the convergence speed of 

getting the near-optimal solution, we always keep one elite ant (i.e., the one with the 

minimum cost in the previous iteration) to the next iteration of the searching process. 

4.2.3.2 Fine Scheduling 

From the Cooperative Dispatching, Routing, and Coarse Scheduling level, we get 

rough itineraries for each BET. However, because we simplify the problem in the previous 

level, the flexibilities of the departure time and the recharging strategy are lost. The fine 

scheduling process is used to recover the flexibilities by iteratively searching for a better 

solution to approximate the optima. Figure 4-5 illustrates such an idea in the travel 

distance-time plot. 
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 In the figure, an example trajectory of a BET calculated from the ACO algorithm 

is depicted, where only one customer is served. The gray bars in the figure depict the time 

window constraints including the scheduled time for the customer’s pickup and delivery as 

well as the return time. The blue segments denote that the BET stops at the pickup or 

delivery location. The green segment denotes the process of recharging. As can be 

observed, by moving the departure time or changing the charging strategy, the trajectory is 

able to better align the time windows to achieve a lower cost. However, it should be noted 

that because of the time-variant traffic condition, the shape of the trajectory, specifically, 

the slope of the moved segments, will also change accordingly. This requires further tuning 

of the continuous variables. When there are multiple customers and recharging, the tuning 

Figure 4-5 Illustration of fine scheduling process. 
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process can be rather complicated. Therefore, we proposed an iterative workflow to solve 

this tuning process for each BET given in Algorithm 4-1.  

Algorithm 4-1: Fine tuning process 

1: Start from the route calculated by the ACO algorithm 

2: for i from N to 0 (N is the recharging times) 

3:   repeat 

4:     record cost 

5:     if i is not 0 

6: change charging strategy of charging station i to minimize the cost from 

current node to the end 

7: change charging strategy of charging station i to minimize the cost from 

current node to the end 

8: change charging strategy of charging station i to minimize the cost from 

current node to the end 

9: change charging strategy of charging station i to minimize the cost from 

current node to the end 

10:     else 

11: change departure time to minimize the overall cost 

12: update traffic condition 

13:     end if 

14:   until (recorded cost - current cost) < threshold 

15: end 
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4.2.3.3 Heuristic Algorithm 

For validating the proposed bi-level hierarchical method, a heuristic algorithm is 

deployed as the baseline, which uses the greedy strategy to search for the feasible solution 

of the proposed optimization problem. The pseudocode of the heuristic algorithm is given 

in Algorithm 4-2. 

Algorithm 4-2: Heuristic algorithm 

1: Sort BETs in the order of SOC level from high to low 

2: for each BET 

3: manage target nodes based on pickup/delivery history of all BETs 

4: if the elements in the target nodes less than 3 

5: add home base into the set of target nodes 

6: end if 

7: sort target nodes in the order of the time window constraints from early to late 

8: for each target node 

9: if (distance from the current node to the target node + distance from the 

target node to the closest charging station) >= rest range 

10: select the unvisited node as next node 

11:                break 

12: else 

13: continue 

14: end if 

15: end 

16: if no feasible next node found 
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17: select the closest charging station as the next node, use standard charging to 

the 100% battery capacity 

18: end if 

19: end 

4.2.4 Case Study 

To validate the proposed bi-level hierarchical method, we perform the numerical 

simulation in this section. The previously introduced heuristic algorithm is carried out as 

a baseline. The numerical case study setup (in Table 4-7) is specified as follows. 
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Table 4-7 Case study setup 

Type Variable Value 

Scenario 

Assumptions 

Map scale 70 × 70 miles 

Number of costumers 8 

Number of charging stations 5 

Loading/unloading time 0.3 hour 

Cargo weight (0, 5] tons 

Working hour [8 am, 6 pm] 

Buffer time 4 hours 

Traffic condition fidelity 0.5 hour 

Vehicle speed 40, 50, 60 mph 

Charging rate 1, 2, 3 hours to full capacity 

BET range 150 miles 

BET carrying capacity 20 tons 

Labor cost rate 25 dollars/hour 

Early/late penalty rate 90 dollars/hour 

Charging rate 0.3, 0.5, 0.7 dollars/mile 

ACO 

Parameters 

Number of ants 150 

Number of iterations 600 

Pheromone weight 0.8 

Heuristic term weight 0.1 

Evaporation rate 0.4 

Pheromone increasing rate 5 
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To mimic the regional dispatching scenario, we generate a map on the scale of 70 

miles square (i.e., 70 × 70 miles). Within this region, we randomly define 5 charging 

stations and 8 customers with 16 corresponding pickup and delivery locations. For each 

location, the loading/unloading time is set to be identical to 0.3 hours, and the cargo weight 

is randomly set within 5 tons. Also, the time windows are stochastically created no shorter 

than one hour. We set the working hour of the fleet to be from 8 am to 6 pm, and a 4-hour 

buffer time after 6 pm is set such that the late returning is allowed with the penalty. The 

fidelity of the time-variant traffic condition is 0.5 hour. Within the 0.5-hour intervals, we 

define three levels of the vehicle speed, namely, 40 mph, 50 mph and 60 mph, to express 

different congestion levels. The distance from one location to another is calculated by their 

Euclidian distance. As to the charging stations, we use the full charging time, 1 hour, 2 

hours and 3 hours to depict three types of charging, i.e. slow charging, regular charging, 

Figure 4-6 Convergence curve of ACO algorithm. 
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and fast charging. We further assume the charging process is at a linear rate. Therefore, if 

a BET aims to charge from 50% to 100% using regular charging, for instance, it will take 

1 hour. From the BET perspective, we use the remaining range to reflect the battery status, 

and the maximum range of a BET is 150 miles in this case study. Still, we assume a linear 

relationship between the battery/mileage consumption and the driving distance. There are 

4 BETs in the fleet, and the carrying capacity of each BET is identical to 20 tons. Finally, 

we define the labor cost rate as 25 dollars per hour, the early/late penalty rate as 90 dollars 

per hour, and the charging rate for three types as 0.3, 0.5 and 0.7 dollars per mile 

respectively. 

The parameters of the ACO algorithm are specified as follows. There are 150 ants 

searching in parallel for 600 iterations. The importance of the pheromone, 𝛼, is set to be 

0.8, while the importance of the heuristic term, 𝛽, is set to be 0.1; The evaporation rate of 

the pheromone is 0.4, and the pheromone increasing rate is 5. The convergence curve of 

the ACO algorithm is shown in Figure 4-6. In the figure, the blue curve shows the 

performance of the best ant which is kept to the following iteration. The red curve shows 

the average performance of the ants that found the feasible route in the current iteration. 

The fluctuation of the red curve indicates the randomicity of the exploration within the 

searching spacing, which prevents the search from falling into the local optimum.  
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Figure 4-7 Shortest route giving by ACO algorithm. 
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The routes and the dispatching schemes are shown in Figure 4-7. The red circle 

depicts the home base, and the green circles denote the locations of the charging station. 

The blue circles and cross marks connected by the blue dash lines represent pairs of the 

pickup and delivery locations of corresponding customers. The travel distance-time plot 

illustrates the solution given by the ACO algorithm (see Figure 4-8). The trajectories are 

marked with three different colors. The red segments show that the BETs travel from one 

location to another; the yellow segments show the loading/unloading stages; the green 

segments show the charging stages. The blue bars represent the time window constraints. 

From the figure, we can observe that the trajectories align well with the time windows in 

the conditions of the fixed departure time and charging strategy. A lower-cost alternative 

can be expected after the Fine Scheduling process.  
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The results of the Fine Scheduling algorithm are shown in Figure 4-9, and the costs 

a re given in Table 4-8. In this process, the results from the ACO algorithm are applied. 

Therefore, similar trajectories are demonstrated in the figure. By moving the departure time 

along the time horizon, and adjusting the charging strategy, more time window constraints 

can be fulfilled. As a result, much lower cost is given. Although the heuristic algorithm is 

capable of finding a feasible solution, the final cost is far from being acceptable. On the 

other hand, the result purely from ACO algorithm can already save 30% of the cost. When 

applying the Fine Scheduling algorithm, the overall cost is reduced by 60%. 

 

Figure 4-8 Travel distance – time plot giving by ACO algorithm. 
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Table 4-8 Cost comparison for different algorithms 

 ACO Algorithm ACO + Fine Scheduling 

Algorithm 

Heuristic Algorithm 

Cost 1185.7318 673.7622 1681.7737 

4.2.5 Summary 

In this work, we proposed a methodology to route and dispatch energy-constrained 

BETs by a two-step optimization of the “electric vehicle routing problem” with pickup and 

delivery, time windows and partial recharge. We first apply the ACO algorithm coarsely 

scheduled the BETs. In order to speed up computation, the departure times for BETs were 

discretized, and the charging strategy was fixed. Then, with the optimization result from 

the ACO algorithm, we recover the continuity of the problem by the fine scheduling 

process. The case study results show a 30% saving of the operation cost comparing the 

Figure 4-9 Travel distance – time plot giving by Fine Scheduling algorithm. 
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ACO algorithm only with the heuristic algorithm, and a 60% saving comparing the bi-level 

method with the heuristic algorithm. This is because the ACO algorithm can find out the 

near optimal solution out of a large set of feasible solutions and allowing flexible departure 

time and charging strategies can further satisfy the time window requirement of the 

customers. Some possible directions for future research include adding detailed energy 

consumption and travel time estimation models to obtain more accurate itineraries and 

incorporating real-world scenarios to evaluate the system effectiveness.  
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5 MICROSCOPIC COOPERATION 

5.1 Corridor-Wise Eco-Friendly Cooperative Ramp Management System for 

Connected and Automated Vehicles 

5.1.1 Introduction and Background 

Ramp merging on highways is one of the most commonly seen scenarios in the 

modern traffic system. For conventional human-driven vehicles, merging at ramps is 

challenging and can inevitably cause many traffic-related problems [151]. From the safety 

perspective, the potential conflicts between on-ramp vehicles and mainline vehicles 

increase the risk of having accidents. From the mobility perspective, the uncontrolled 

inflow traffic to the highway network results in congestion. From the environmental 

sustainability perspective, due to the limited vision range (e.g., by obstructions) and 

uncoordinated merging behaviors, frequent unnecessary acceleration/deceleration 

maneuvers may occur in the merging area, which leads to excessive energy consumption 

and pollutant emissions. 

The traditional ramp management method is ramp metering, which regulates the 

inflow rate of the traffic entering the mainline by using traffic signals located at the end of 

the. By controlling the traffic light to change between red and green, only a certain number 

of vehicles can enter the highway mainline during each predefined interval. The controlled 

inflow rate is calculated based on traffic conditions. Although ramp metering has been 

deployed in many real-world scenarios and has proven to be a cost-effective operational 

strategy to reduce mainline congestion, it has a few major drawbacks: 
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• Conventional ramp metering relies on traffic state estimation from loop detectors that 

may not be accurate enough to represent real-time traffic conditions and provide 

detailed guidance for merging maneuvers;  

• The traffic signals may introduce unnecessary stop-and-go maneuvers to the on-ramp 

vehicles, which leads to extra travel time and excessive energy consumption, 

particularly for heavy-duty trucks; 

• The ramp metering system leaves ramp vehicles a much smaller space in which to 

adjust their speeds to merge into the mainline stream (due to mandatory stops at the 

meter), which increases the safety risks. 

Recently, with the emerging connected and automated vehicle (CAV) technology, 

researchers have turned their focus to CAV-based cooperative ramp control algorithms that 

have the potential to avoid the aforementioned drawbacks. CAVs that broadcast 

information such as position and speed can improve traffic state estimation. Additionally, 

by elaborately designing their trajectories, CAVs can drive in a cooperative manner (e.g., 

a vehicle string with closely spaced gaps), which enables smooth merging. As a result, no 

stop-and-go maneuvering is needed (improved fuel economy), and safety is guaranteed by 

the automatic control algorithm. Additional benefits include the increased roadway 

capacity as the headway can be reduced compared to human-driven vehicles. Despite all 

the advantages of the CAV-based cooperative ramp control approach, many issues need to 

be addressed to further improve system performance: 

• Most of the existing studies only focus on the control of an isolated ramp merging area. 

The control effect on the down-/up-stream traffic is unknown. The uncoordinated 
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traffic management across multiple ramps along a corridor may mitigate the benefit 

provided by the local optimal controller; 

• Numerous CAV-based cooperative ramp control algorithms have been developed to 

improve system mobility and to show environmental benefits, but very few of them are 

energy-oriented. In addition, most of them assume the first-come-first-serve (FCFS) 

sequencing strategy for simplicity, which cannot guarantee the system optimum; 

• Most of the research validates the system performance within a limited scope (e.g., 

using numerical simulation or applying the simulation with only a handful of CAVs). 

However, such validation methods may not be able to explore the long-term impacts 

on the traffic across a wide variety of scenarios. 

5.1.2 Problem Formulation and System Architecture 

5.1.2.1 Problem Formula Assumptions 

In this study [151], [152], we make the following assumptions for the system 

development. From the connectivity perspective: 

• All vehicles are Connected and Automated Vehicles (CAVs);  

• Vehicle information, such as position and speed, can be precisely captured and shared 

with each other as well as with the central traffic management unit via vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, respectively. 

• The communication delay and package loss are considered to be zero.  

From the control perspective: 

• Vehicles can receive and strictly follow control instructions, i.e. accelerations or 

decelerations, from the central traffic management unit which may be a roadside unit 
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(RSU) deployed at each ramp. It can collect the data from CAVs within a certain range, 

estimate the traffic conditions, communicate with other traffic management units along 

the corridor, and calculate the detailed control instructions for CAVs; 

• Cooperative maneuvers for ramp merging are considered only longitudinally. In the 

simulation study, lateral control is handled by the default model behavior. 

5.1.2.2 Vehicle Dynamics 

In this study, we assume that all the CAVs are governed by the second-order 

dynamics: 

𝑝𝑖̇ = 𝜈𝑖 , 𝜈𝑖̇ = 𝑢𝑖 (5-1) 

 

where 𝑖(∈ [1, 2, … , 𝑛])  is the vehicle index (from downstream to upstream); 𝑝  and 𝜈 

represent the position and speed of the vehicle, respectively; and 𝑢 denotes the 

acceleration/deceleration of the vehicle, which acts as the input to the system. To improve 

the traffic efficiency, CAVs from on-ramp and/or mainline may be formed into a tight 

string (or group) at the merging area. Therefore, the states of the overall dynamic system 

of a group of CAVs can be defined as: 

State: 𝑥 = (𝑝1, 𝑝2, ⋯ , 𝑝𝑛, 𝑣1, 𝑣2, ⋯ , 𝑣𝑛)
𝑇; If there exists a reference vehicle in front of the 

whole group (e.g., the last vehicle in the preceding group), then 

Observation: 𝑦 = (𝑝𝑟 − 𝑝1, 𝑝1 − 𝑝2, ⋯ , 𝑝𝑛−1 − 𝑝𝑛, 𝑣1, 𝑣2, ⋯ , 𝑣𝑛)
𝑇 

otherwise, 

Observation: 𝑦 = (𝑝1 − 𝑝2, ⋯ , 𝑝𝑛−1 − 𝑝𝑛, 𝑣1, 𝑣2, ⋯ , 𝑣𝑛)
𝑇. 
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The state vector 𝑥 includes the positions and speeds of all the vehicles within the 

group to be controlled, and the observation vector contains the variables to be tracked 

giving the reference signals. The first entry, 𝑝𝑟 − 𝑝1, is added when there exists a preceding 

vehicle in front of the whole group so that the group leader can track the position of the 

preceding vehicle plus a certain time gap. Therefore, the whole group is able to follow the 

preceding vehicle smoothly without collision. The system can be written in the following 

linear form: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 

(5-2) 

 

where 𝐴 = (
𝜪1 𝑰
𝜪2

) , 𝐵 = (
𝜪1
𝑰
) , 𝜪1  is an 𝑛 × 𝑛  zero matrix, 𝜪2 is an 𝑛 ×

2𝑛 zero matrix, and I is an 𝑛 × 𝑛 identical matrix; and 

C=

(

 
 
 

1, 0, . . . , 0, 0, 0
1, −1, 0, . . . ,0, 0, 0
0, 1, −1,0, . . . , 0,0,0

. . .
0, . . . ,1, −1, 0,0,0

𝜪1 𝑰 )

 
 
 
   ∈ ℛ2𝑛×2𝑛 

if there exists a preceding reference vehicle in front of the whole group. Otherwise,  

C=

(

 
 

1,−1, 0, . . . ,0, 0, 0
0, 1, −1,0, . . . , 0,0,0

⋯
0, . . . ,1, −1, 0,0,0

𝜪1 𝑰 )

 
 
   ∈ ℛ(2𝑛−1)×2𝑛 . 
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5.1.2.3 Optimization Problem Formulation 

We seek to keep the balance between the convergence speed of observation and the 

control effort. Therefore, we formulate an optimization problem in the quadratic form as 

follow: 

 

min    𝐽 =
1

2
∑{(𝑦𝑘 − 𝑟𝑘)

𝑇𝑄(𝑦𝑘 − 𝑟𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘}

𝑁−1

𝑘=0

+
1

2
(𝑦𝑁 − 𝑟𝑁)

𝑇𝑄(𝑦𝑁 − 𝑟𝑁) 

𝑠. 𝑡.    𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , 

𝑦𝑘 = 𝐶𝑥𝑘 

𝐴𝑐𝑐min ≤ 𝑢𝑘 ≤ 𝐴𝑐𝑐max 

((𝑝𝑖)𝑘 − (𝑝𝑖+1)𝑘) ≥ 𝐺𝑎𝑝min 

(5-3) 

where 𝑟𝑘 is the gap and speed reference to be tracked; 𝑄  and 𝑅  define the weighting 

matrices of the objective function to be tuned, respectively, for the system outputs and 

inputs. [𝐴𝑐𝑐min, 𝐴𝑐𝑐max]  is a feasible input range that a vehicle can achieve, and the 

boundary values can vary with respect to the vehicle speed. For example, 𝐴𝑐𝑐max at high 

speed is smaller than that at low speed (considering the power limit). 𝐺𝑎𝑝min is the safety 

gap to avoid collisions. If vehicle 𝑖 and vehicle 𝑖 + 1 are on the same lane (i.e., either both 

on the on-ramp or both on the mainline), this constraint should be held strictly. If vehicle 𝑖 

and vehicle  𝑖 + 1 are on different lanes (e.g., one is on the mainline while the other is on 

the on-ramp), this constraint needs to be held when they arrive at (or very close to) the 

merging area. 
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5.1.2.4 System Architecture 

Figure 5-1. shows the bi-level system architecture of the proposed corridor-wise 

ramp management system, while no vehicle behavior model is used. At the corridor level, 

the developed system can calculate the corridor-wise optimal inflow rate at each on-ramp, 

based on the real-time traffic conditions and estimated traffic states, to guarantee the 

efficiency of networked traffic. At the ramp level, there are three major modules: 1) 

grouping CAVs that are in spatial proximity (on both the mainline and on-ramp) as well as 

satisfy the optimal inflow rate suggested by the upper level algorithm; 2) identifying the 
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optimal merging sequence for the group of CAVs in terms of energy consumption; and 3) 

controlling CAVs’ speeds in an energy-efficient manner with the model predictive control 

(MPC) approach to achieve the suggested metering rate at the same time. 

 

 

Figure 5-1 System Architecture of the Ramp Management System. 
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5.1.3 Methodology 

5.1.3.1 Corridor-Level: Metering Rate Estimation 

The corridor-level control strategy is to maintain the optimal operation of the 

corridor by regulating the highway demand to be under the capacity. Therefore, the inflow 

rate of each ramp needs to be determined for boundary control, which also serves as the 

constraint for the ramp-level CAV motion control. In this study, we consider the following 

for metering rate determination: 

• The free-flow condition of the mainline traffic should be maintained as much as 

possible; 

• The queue length at on-ramps should be limited to avoid affecting traffic on adjacent 

arterials; 

Figure 5-2 Flowchart of corridor-wise ramp metering rate determination. 
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• The traffic condition should be able to recover from congestion (if any) as soon as 

possible. 

Many existing corridor-wise ramp metering algorithms may take into account 

traffic conditions along the freeway and calculate coordinated metering rates for multiple 

ramps simultaneously. In this study, we adapted the Next Generation Stratified Ramp 

Metering Algorithm proposed by Geroliminis et al [153] and applied to the scenario with 

full penetration of CAVs. The objective is to balance the ramp waiting time and ramp 

inflow rate (or the demand and queue lengths at on-ramps) as well as the level of congestion 

on the mainline, to delay the operation of the breakdown and to accelerate system recovery. 

The zone is defined as a segment of the highway between two consecutive mainline 

detector locations (in traditional freeway system). For each section, there is a threat index 

denote the risk of being a bottleneck. Based on the indices, the controlled ramp can be 

determined. Figure 5-2 depicts the flow chart to identify the controlled ramp. In the figure, 

i in current section ID; k is number of consecutive downstream section; 𝑃𝑖 is the congestion 

threat index of the current section; M(i, i-k) is the net inflow between the two locations i 

and i-k, defined as the sum of on-ramp volumes minus the sum of off-ramp volumes plus 

the capacity flow difference for all ramps between the two locations. 
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Then, with the zone identification information, the metering actions matrix are 

defined in the following Table 2. 𝑐ℎ(𝑖) is the uncongested capacity; q(i) is the mainline 

demand; 𝑑𝑖  is the ramp demand; j is the downstream controlling ramp id;  𝑟𝑡(𝑗) is the 

current suggested metering rate of location j; 𝛥𝑡𝑖 = 𝑇𝑐𝑟𝑖𝑡 - 𝑤𝑡(𝑖), where 𝑇𝑐𝑟𝑖𝑡 is the ramp 

delay constraint and 𝑤𝑡(𝑖) is the current maximum waiting time at ramp i; 𝐾1 and 𝐾2 are 

contribution parameters depicting the importance of breakdown on the ramp and on 

mainline; 𝜏𝑤 is the safe time-to-breakdown defined for the ramp; 𝑇𝑡
𝑤(𝑖) and 𝑇𝑡

𝑘(𝑖) are the 

estimated time remaining to congestion on the mainline and ramp. The values of the 

parameters and the variables are calculated based on historical or real-time data. 

5.1.3.2 Ramp-Level: Movement Control and Rate Regulation 

At the ramp-level control, three major modules are developed to enable the energy-

efficient cooperative maneuvers of CAVs, i.e., vehicle grouping, sequence determination, 

and longitudinal speed control. 

The vehicle grouping module is essential to ensure that the system can manage the 

continuous flow of traffic. We first define control zone and buffer zone shown in Figure 5-

3. Both mainline and ramp have these two types of zones. The control zone is a segment 

of road from the upstream of the merging area to the merging point. In the control zones, a 

Figure 5-3 Definition of the zones of the proposed ramp-level control. 
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roadside unit serves as a centralized traffic controller to receive and process the incoming 

information from CAVs and send control signals back to CAVs. Then the CAVs should 

strictly follow the instructions such that the platoon with designed time gaps can be formed. 

The buffer zone, on the other hand, locates at the upstream portion of the control zone. In 

the Buffer zones, the incoming vehicles are monitored and to be grouped.  

Before describing the details of the event-based vehicle grouping strategy (see 

Figure 5-4), we should define the concept of ramp leader. Ramp leader is an on-ramp 

vehicle that triggers the grouping process. Ramp leader is the first on-ramp vehicle that 

does not pass through the buffer zone and has not been controlled. We first assume that 

there exists a group of vehicles under control. Then, the current ramp leader would be the 

first vehicle on the ramp who is following the group. Once the ramp leader passes the 

downstream boundary of the on-ramp buffer zone or the trigger point, the grouping process 

is activated, and the vehicles in the buffer zones of both mainline and ramp is collected as 

a group. At the same time, the current ramp leader is changed accordingly. If there is no 

group of vehicles under control, then, the first on-ramp vehicle is the current ramp leader 

until it passes the trigger point. It should be noted that the control for a group happens right 

after the group is determined until all the vehicles in the group drive through the control 

zone. It possible that the new group is constructed while the previous group is still driving 

Figure 5-4 Flowchart of the vehicle grouping. 
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within the control zone. As a result, there could be multiple groups in parallel. Therefore, 

we use a pipeline architecture of store, process, and control the groups of the vehicles. 

For each ramp, the length of the control zone and buffer zone are predefined to 

better adapt the physical condition. For the corresponding mainline area, the downstream 

side of the buffer zone is fixed while the length of these zone changes dynamically 

according to the real-time traffic condition and the suggested metering rate from the 

corridor-level module. In this way, the vehicle grouping module is able to collect an 

appropriate number of mainline vehicles into the group. The length of the mainline buffer 

zone is determined with the following equation: 

𝐿𝑚𝑎𝑖𝑛 =
𝑞𝑚𝑎𝑖𝑛

𝑞𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑
∙ 𝑛 𝑑𝑚𝑎𝑖𝑛⁄  (5-4) 

where 𝑞𝑚𝑎𝑖𝑛 is the mainline traffic flow known from corridor traffic condition; 𝑞𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 

is the suggested on-ramp inflow rate assumed to be known; n is the number of on-ramp 

vehicles currently in the buffer zone; 𝑑𝑚𝑎𝑖𝑛 is the mainline density. 

After CAVs are grouped respectively, those within the same group will be 

controlled together coordinately. To enable efficient merging maneuvers, it is critical to 

determine the merging sequence of CAVs. In this research, we propose a three-step 

Optimal Sequence Determination process as follows.  

Feasible sequence generation: In this step, all the possible entrance sequences of 

CAVs in a group are first generated. As we assume that the vehicles on the same lane 

cannot overtake their preceding vehicles, the number of all the feasible sequences equals 
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to 𝑃(𝑚 + 𝑛, 𝑛), where  𝑃(∙) is the permutation operation; m is the number of mainline 

vehicles. 

Linear quadratic tracking: The LQ tracking algorithm is applied to solve the 

optimization problem as defined previously. Different merging sequences correspond to 

different initial states of the system. Using the finite-horizon linear quadratic tracking 

algorithm, we are able to calculate the control inputs and the specific trajectories of the 

vehicles for each possible sequence. The Q and R are the weight matrices of the objective 

function. By tuning these two matrices, the convergence speed of observations and the 

control effort can be balanced. The control input can be obtained by solving the algebraic 

Riccati equation [154]: 

{
𝑆𝑁 = 𝐶

𝑇𝑄𝑁𝐶

𝑉𝑁 = 𝐶
𝑇𝑄𝑁𝑟𝑁

 
(5-5) 

{
𝑆𝑖 = 𝐶

𝑇𝑄𝐶 + 𝐴𝑇𝑆𝑖+1 − 𝑆𝑖+1𝐵(𝑅 + 𝐵
𝑇𝑆𝑖+1𝐵)

−1𝐵𝑇𝑆𝑖+1𝐴

𝑉𝑖 = {𝐴
𝑇 − 𝐴𝑇𝑆𝑖+1𝐵(𝑅 + 𝐵

𝑇𝑆𝑖+1𝐵)
−1𝐵𝑇}𝑉𝑖+1 + 𝐶

𝑇𝑄𝑟𝑖
 

(5-6) 

{
𝐾𝑖 = (𝐵

𝑇𝑆𝑖+1𝐵 + 𝑅)
−1𝐵𝑇𝑆𝑖+1𝐴

𝐾𝑖
𝜈 = (𝐵𝑇𝑆𝑖+1𝐵 + 𝑅)

−1𝐵𝑇
 

(5-7) 

where N is the predefined finite horizon; i is the discrete-time index for each iteration; 𝐾𝑖 

is the feedback gain; and  𝐾𝑖
𝜈  is the feed-forward gain. 𝑆𝑖, 𝑉𝑖, 𝐾𝑖 , and 𝐾𝑖

𝜈  can be found 

iteratively backward in time. Then the control input is given by 𝜇𝑖 = −𝐾𝑖𝑥𝑘 + 𝐾𝑖
𝜈𝑉𝑖 . 

Therefore, for each possible sequence, the speed profile can be calculated. 

Energy consumption estimation: Based on the calculated speed profile under each 

possible sequence, the corresponding energy consumption can be estimated for the vehicle 

with different classifications (such as passenger cars, transit buses, or trucks) and 
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powertrains (e.g., internal combustion engines or electric motors). In the simulation, we 

assume all the vehicles are passenger cars and the road grade is trivial, and we will evaluate 

the system performance for both gasoline-powered vehicles and electric vehicles. In 

addition, for gasoline-powered vehicles, we refer to the model proposed by [155]: 

𝑓𝑉 = 𝑏0 + 𝑏1𝑣 + 𝑏2𝑣
2 + 𝑏3𝜈

3 + 𝑎(𝑐0 + 𝑐1𝑣 + 𝑐2𝑣
2) (5-8) 

where 𝑏𝑖 and 𝑐𝑖 are the model parameters calibrated by different driving conditions; 𝑣 and 

𝑎 are the speed and acceleration of the vehicles. 

For electric vehicles, the model developed in our previous work [156] is used: 

𝑃 = 𝑓(𝑣, 𝑎) = 𝑓0 + 𝑙1𝜈cos(𝛼) + 𝑙2𝜈sin(𝛼) + 𝑙3𝜈
3 + 𝑙4𝑣𝑎 +

𝑙5𝑣
2cos(𝛼) + 𝑙6𝜈

2sin(𝛼) + 𝑙7𝑣
4 + 𝑙8𝜈

2𝑎 

(5-9) 

where 𝑙𝑖 is the model parameter calibrated by different driving conditions; 𝛼 is the road 

grade (rad). 

Finally, the sequence with the least aggregated energy consumption is selected as 

the optimal scenario, and the control algorithm in the next section will be applied to this 

sequence. 

As aforementioned, we focus on the longitudinal speed control to engage energy-

efficient cooperative ramp merging of CAVs in this study. There are two parts in this 

module. The first part is an MPC controller which applies a receding-horizon LQ tracking 

algorithm to control the vehicles in each group. To match the predicted energy 

consumption in the optimal sequence determination step, the same control parameters are 

used as in the associated finite-horizon LQ tracker. Also, there are multiple MPC 
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controllers running in parallel to control multiple groups in the pipeline. The second part 

of the speed control module is a ramp inflow rate controller. Based on the suggested inflow 

rate from corridor-level control, the speed of the ramp leader within each group is regulated 

to fulfill the boundary constraint. Towards this end, we first calculate the estimated time of 

arrival (ETA) of the ramp leader, assuming it would follow the preceding vehicle without 

any external control. And the Intelligent Driver Model (IDM) [157] is used for the 

prediction of its ETA. 

𝜈̇ = 𝑎(1 − (
𝜈

𝜈0
)
𝛿

− (
𝑠∗(𝜈 − 𝛥𝜈)

𝑠
)
2

 
(5-10) 

𝑠∗(𝜈 − 𝛥𝜈) = 𝑠0 + 𝜈𝑇 +
𝜈𝛥𝜈

2√𝑎𝑏
 

(5-11) 

where 𝜈0 is desired speed; 𝑠0 is the minimum spacing; 𝑇 is the desired time headway; a is 

the maximum vehicle acceleration; and b is the comfortable braking deceleration.  

Then, we compare the predicted ETA with the recommended time of arrival (RTA) 

based on the suggested inflow rate from the corridor-level control, using the following 

equation: 

𝑡𝑒𝑥𝑝𝑒𝑐𝑡 =
𝑛𝑟𝑎𝑚𝑝

𝑞𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑
 

(5-12) 

where 𝑛𝑟𝑎𝑚𝑝 is the number of ramp vehicles within the previous group; 𝑞𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 is the 

metering rate from the corridor-level module.  

If ETA is smaller than RTA, the ramp leader should be controlled to slow down 

and pass the trigger point at the recommended time. Or if ETA is larger than RTA, the 

ramp leader is not controlled. To achieve better energy consumption, we apply the dynamic 
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eco-driving strategy (given the target arrival time [158] for the speed control of the ramp 

leader. Dynamic programming is used to obtain the least energy consumption solution.  

5.1.4 Simulation Study 

We use the simulation environment introduced in the previous section, PTV-

VISSIM Two-ramp Freeway Scenario, to evaluate the effectiveness of the proposed 

management system. The lane change maneuver is controlled by the lateral behavior model 

provided by VISSM with the default parameters. The desired speeds for both mainline and 

merging traffic are 74.6 mph (or 120 km/h), and the initial speed of the on-ramp vehicles 

entering the network is set to be 11.2 mph (or 18km/h). The weight matrices for the 

quadratic objective function, i.e. Q and R, are tuned manually to adapt to the road network. 

We set the Q and R to be diagonal matrices. The position weight between both two mainline 

vehicles is 5, between both two ramp vehicles is 30, and between one ramp vehicle and 

one mainline vehicle is 6; the speed weight for the mainline vehicle is 50 and for the on-

ramp vehicles is 30; the acceleration weight for the mainline vehicles is 2800 and for the 

on-ramp vehicles is 2500. 

We also set two control groups (with human-driven vehicles) for comparison: the 

first one applies the ramp metering strategy with the same metering rate at each ramp as 

the test group that is obtained from the corridor-wise SRM algorithm; and the second one 

had no external control for merging maneuvers (i.e., no metering). There are no 

communication or driving assistance for the vehicles in both control groups.  

Simulation scenarios are set up to evaluate different traffic conditions by defining 

the average input volume from each entrance of the network, including mainline, ramp 1, 
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and ramp 2. Within the 20-minute simulation period, there exist two phases of traffic 

demands. In Phase 1 (from 0 to 600 seconds), we set the mainline input to be 1200 

passenger-car-unit/hour/lane (pcu/hr/ln), ramp 1 input to be 500 pcu/hr/ln, and ramp 2 input 

to be 200 pcu/hr/ln. In Phase 2 (from 600 to 1200 seconds), we set the mainline input to be 

1200 pcu/hour/lane, ramp 1 input to be 300 pcu/hr/ln, and ramp 2 input to be 200 pcu/hr/ln. 

During each phase, the incoming vehicles are randomly spawn into the network, and after 

phase 2, the simulation would keep running until the network clears up.  

5.1.4.1 Results Comparison for Gasoline Vehicles 

Figure 5-5. shows the example trajectories of CAVs (from 200 to 500 seconds) 

generated from VISSIM. In the top subplot, the proposed eco-friendly cooperative ramp 

management system can not only smooth the speed profiles of ramp vehicles, but also 

mitigate the potential congestion of downstream mainline traffic by regulating the inflow 

rates of both on-ramps. In the middle subplot, although the mainline traffic is not affected 

by the merging vehicles, traffic on ramp 1 significantly slows down and forms a long queue 

Figure 5-5 Trajectories of the CAVs for the three cases. 
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due to the ramp metering. In the no control case as shown in the bottom subplot, the 

merging vehicles cause the shockwaves on mainline which propagates upstream and 

eventually results in congestion on both mainline and ramp 1. 

To investigate the performance of the proposed system, mobility is measured by 

the network efficiency, 𝑄 =
𝑉𝑀𝑇

𝑉𝐻𝑇
, where VMT denotes the vehicle-miles traveled of all 

CAVs in the network; and VHT denotes the vehicle-hours traveled in the network. The 

energy consumption for the gasoline vehicles (with Eq. 8) is estimated in the unit of miles 

per gallon (mpg). And the results are shown in the following table. 
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Table 5-1 Simulation Results of Mobility and Energy Performance for Gasoline 

Vehicles 

 Mobility (mph) Energy (mpg) 

The bigger the better 

Proposed 

 

Overall 59.10 (48.6%) (79.4%) 44.40 (35.1%) (0.8%) 

Mainline 62.17 (-4.9%) (107.3%) 41.45 (10.0%) (-4.0%) 

Ramp 1 53.14 (210.0%) (-7.7%) 51.75 (119.2%) (8.4%) 

Ramp 2 50.60 (-2.7%) (14.9%) 65.12 (112.1%) 

(56.0%) 

Ramp Metering Overall  39.76 32.87 

Mainline 65.40 37.67 

Ramp 1 17.14 23.61 

Ramp 2 52.03 30.70 

No Control Overall 32.95 44.05 

Mainline 29.98 43.19 

Ramp 1 57.55 47.73 

Ramp 2 44.05 41.74 

 

As can be observed from Table 5-1, the overall mobility of the proposed system is 

increased by 48.6% and 79.4%, compared to the ramp metering case and no control case, 

respectively. Also, vehicles can achieve higher mpg with the proposed ramp management 

system, compared to both cases (35.1% and 0.8%, respectively) due to the mitigation of 

traffic congestion. In addition, it turns out that although ramp metering can significantly 
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mitigate the mainline congestion, it penalizes too much (in terms of both mobility and 

energy) on ramp traffic, in particular for ramp 1. 

The safety performance is analyzed using the time-to-collision (TTC) distributions 

(obtained from the Surrogate Safety Assessment Model [159]) as shown in Figure 5-6. The 

x-axis denotes the TTC in second, and the y-axis denotes the number of events in the 

corresponding bins. The figure shows that there is no event of TTC being less than 1.5 

seconds for the proposed ramp management system. This indicates that the proposed 

system would result in a trivial number of potential conflicts and significantly improve the 

safety performance, compared with the other two cases. 

5.1.4.2 Results Comparison for Electric Vehicles 

The simulation of electric vehicles is also conducted in this study. For the EV 

analysis, we use kWatt/100mile as the measurement of the energy consumption. The results 

are shown in Table 5-2. 
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Table 5-2 Simulation Results for Electric Vehicles 

 Mobility (mph) Energy (kWatt/100mile) 

The smaller the better 

Optimal 

Control 

Overall 62.31 (56.7%) (89.1%) 40.91 (-24.0%) (-2.5%) 

Mainline 65.28 (-1.8%) (117.7%) 44.15 (-7.6%) (3.5%) 

Ramp 1 57.14 (233.4%) (-0.7%) 33.75 (-54.2%) (-13.0%) 

Ramp 2 54.03 (3.8%) (22.7%) 29.04 (-44.9%) (-37.3%) 

Ramp 

Metering 

Overall 39.76 53.84 

Mainline 65.40 47.76 

Ramp 1 17.14 73.68 

Ramp 2 52.03 52.72 

No Control Overall 32.95 41.98 

Mainline 29.98 42.64 

Ramp 1 57.55 38.80 

Ramp 2 44.05 46.33 
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The mobility performance of the EVs scenario is like the Gasoline vehicles, and the 

trend of energy performance is also the same. The major seasons cause the mobility 

differences between the electric vehicles and the gasoline-powered vehicles fall into two 

aspects. First, different energy consumption models applied may change the determination 

of the entrance sequence. Second, when controlling the ramp leader to slow down, the 

energy models play role in the optimization process. Although proving the similar mobility 

improvement, due to the regenerative braking feature of the electric vehicles, a smaller 

level of the energy saving can be achieved. 

5.1.5 Summary 

This study proposed a corridor-wise eco-friendly cooperative ramp management 

system for connected and automated vehicles (CAVs). At the macroscopic level (corridor 

Figure 5-6 Distributions of TTC. 
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level), the optimal inflow rate for each ramp along the corridor is calculated by the Next 

Generation Stratified Ramp Metering Algorithm. At the microscopic level (ramp level), 

we developed a dynamic control strategy for CAVs to achieve rate regulation, group 

determination, and motion control in an energy-efficient manner. With the microscopic 

traffic simulation in VISSIM, the effectiveness of the system is demonstrated from the 

perspectives of safety, mobility, and environmental sustainability, compared to cases of 

human-driven vehicles with and without ramp metering control. To understand the 

robustness of the proposed system with respect to different powertrain technologies, we 

also evaluated the performance for scenarios with gasoline vehicles and electric vehicles, 

respectively.  
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6 SOLVING THE MIXED TRAFFIC PROBLEM 

6.1 Infrastructure-Side Sensing 

6.1.1 Introduction and Background 

Roadway intersections are the most common yet complicated traffic scenario that 

connects two or more road segments and involves potential conflicts between multiple 

types of road users whose view can be partially occluded because of road geometry. As a 

result, it is a highly challenging task for road users to move at intersections in terms of 

safety, mobility, and environmental sustainability. From a safety perspective, about 40% 

of crashes in the U.S. are intersection-related, which causes more than 20% of traffic 

fatalities yearly [160]. From the mobility perspective, traditional traffic control methods 

such as traffic lights and stop signs assign priority levels by forcing road users to stop and 

wait. Although existing research uses adaptive signalized control to reduce the waiting time 

and improve the throughput of the network to some degree, further optimization can be 

achieved by introducing higher-level cooperation. From the environmental sustainability 

perspective, the stop-and-go maneuvers of road users, especially for heavy-duty vehicles, 

waste a large among of energy. 

To address the aforementioned challenges, more and more researchers have turned 

to CAV technologies. For example, Cooperative Driving Automation (CDA), proposed by 

Federal Highway Administration, US DOT [161], is expected to reduce 20% of fuel 

consumption at intersections and double the road network capacity if vehicles can 

communicate between vehicles, infrastructure devices, and road users (e.g., pedestrians 

and cyclists), and make decision cooperatively. To support this, many communication 
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standards are established, such as Cooperative Awareness Message (CAM) [162], Basic 

Safety Message (BSM) [163], and Collective Perception Message (CPM) [164], [165], 

which allows the road users and infrastructures to receive and broadcast the detected 

objects.  

LiDAR is an active sensor that generates the range and reflection point cloud, 

whereas a camera is a passive sensor that projects the 3D space into 2D planes with three 

color channels. As a result, it is easier for the camera to recognize the objects but harder to 

obtain precise range information. Because the roadside sensors often shoot to the ground 

and all the objects (e.g., cars, pedestrians) are assumed to move on the ground surface, the 

ranging impacts may be minimal. In comparison to LiDAR, however, the camera normally 

has significantly greater resolution. Therefore, in this study, we chose the camera as the 

sensor of our RSPU. Compared to the regular perspective camera, the fisheye camera or 

Figure 6-1 System architecture of the infrastructure-side sensing. 
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omnidirectional cameras are becoming increasingly used in multiple areas such as traffic 

monitoring [71] and drone sensing [72] due to its wider detection view. Taking advantage 

of this feature, fewer cameras are required to cover the entire range of the target 

intersection. However, the images from the fisheye camera suffer from distortion and 

perspective effects, which necessitate additional processing. Furthermore, unlike the 

development of onboard detection algorithms, which already has a large amount of labeled 

data, the roadside camera dataset with positioning information, let alone fisheye camera 

dataset, are scarce. As a result, instead of deep learning-based approach, we have to rely 

on the image processing and conventional computer vision techniques to achieve the data-

free real-time detection, localization and tracking tasks.  

Figure 6-2 Roadside Perception Unit (RSPU) and communication topology. 
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6.1.2 System Architecture 

Figure 6-1 shows the overall architecture of the proposed real-time data-free 

perception system [73]. The RSPUs are deployed on top of each traffic intersection and 

send the detected vehicle trajectories back to the cloud server. The cloud server receives 

information, including consistent IDs, positions, orientations, and speed of the vehicles, 

and runs microservice applications such as traffic hazard prediction and traffic flow 

management. Finally, the agents, like connected vehicles and roadside infrastructures, 

equipped with communication modules, will be assisted in making decisions cooperatively 

for safety and mutually beneficial purposes. 

The perception algorithm running on the RSPUs contains four major modules, 

including fisheye image undistortion, BS-based object detection, object tracking, and 

Figure 6-3 RSPU Graphic User Interface. 



 108 

object localization. First, the undistortion module recovers the perspective bird's-eye view 

(BEV) image based on the calibration parameters which are calculated using the auto-

calibration method. Next, the undistorted video stream is fed into an innovative multi-layer 

BS-based object detector. The cascaded structure of the dynamic background generation 

module can synthesize real-time background with high frequency under all lighting 

conditions. It is also suitable for all moving objects at different speeds. Then, the DeepSort 

algorithm is implemented to associate IDs for all the detected objects. Finally, we calculate 

the chassis center of the detected vehicles based on the geometric relations and project the 

points to the world coordinate using the Haversine formulation. The details of the 

algorithms are introduced later in the Methodology section. 

As shown in Figure 6-2, the Roadside Perception Unit includes a GRIDSMART 

Bell fisheye camera, an edge computer, and the communication devices such as a cellular 

modem and an ethernet switch located in the traffic control cabinet. The GRIDSMART 

Bell camera is mounted parallel to the road surface on top of the traffic pole with a 180-

degree Field of View (FOV). It can only provide raw image data using Real-Time 

Streaming Protocol (RTSP) from a roadside processor unit (also located in the traffic 

control cabinet). Directly broadcasting the raw data through RTSP takes a significant 

amount of network bandwidth and usually has an unacceptable delay. Therefore, in our 

application, we use an edge computer to subscribe to the RTSP streaming locally in the 

RSPU and only broadcast the detection results via cellular communication. The Graphic 

User Interface (GUI) running on the edge computer is shown in Figure 6-3, where all the 

key modules of the RSPU are running with a multiprocessing scheme. The connected 

vehicle is equipped with a cellular module and an onboard PC to receive, process, and store 
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data. For system validation purposes, the connected vehicle also installed an RTK GPS unit 

(ublox F9R) as the ground truth. 

The RSPU is implemented and tested in a real-world environment at the 

intersection of University Avenue and Iowa Avenue, as shown in the bottom right of Figure 

6-3. The target intersection has 3 to 4 lanes for each direction and requires at least a 50 m 

by 50 m detection coverage. The fisheye camera is mounted at the southeast corner of the 

intersection, which can cover the whole intersection and detect incoming traffic from 

different approaches. 

6.1.3 Methodology 

Due to the significant distortion from edge to center, and the limited roadside 

camera dataset with positioning information, the existing methods based on the deep neural 

networks may not be applicable to fisheye images. This section introduces the design of 

the system and the detailed algorithms. 

Figure 6-4 Illustration of auto-calibration process. (a) Extracted trajectories in raw 

image. (b) Extracted trajectories after undistortion with estimated calibration 

parameters. 
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6.1.3.1 Fisheye Camera Calibration 

To undistort the image and to build up the relationship between the image 

coordinates and the world coordinates for localization, camera calibration is necessary. 

Different from the ordinary camera that can use the pinhole model for calibration, three 

different models can be used to calibrate the fisheye camera, e.g., equisolidity projection, 

orthogonal projection, or stereographic projection. Although frameworks such as OpenCV 

provide functions to calibrate the camera readily, there is still some difficulty in obtaining 

correct calibration results in practice. Therefore, we go over the lesson and experiences 

from the field test in this subsection. 

The typical way to calibrate a camera is to get a set of point pairs in both image 

space and 3D space and then use the Least Square to estimate the parameters based on the 

camera model, such as Zhang’s method [166]. The easiest way to get the point pairs is to 

capture a chessboard image with known measurements from multiple perspectives. 

However, there are two key obstacles to the intersection monitoring application in practice. 

First, the fisheye camera is normally put on the top of a traffic signal pole, which can be 

up to 5 meters in height. It's difficult to get pictures of a chessboard of good quality. Second, 

because the road surface and detection target are so far away from the camera, even trivial 

calibration errors might result in meter-level position errors, especially for objects that are 

far from the fisheye camera's center. Another way is to first select sample points in the 

field, measure their locations in the world coordinates, and then fit the fisheye model with 

the corresponding points in the image plane. The 3D location of the sample points can be 

acquired using an RTK GPS device or well-calibrated LiDAR. However, it is necessary to 
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manually select the corresponding points in the image plane. As a result, the calibration 

accuracy is not acceptable for our application. 

Inspired by the work by Jain et al. [167], we propose the auto-calibration method 

to get the camera parameters, including intrinsic, extrinsic, and distortion parameters. By 

assuming the camera is an equidistant fisheye, the following equation holds: 

𝑟𝑢 = 𝑓 ∙ 𝜃 (6-1) 

where 𝜃 is the angle between a point in the real world and the optical axis; 𝑓 is the 

focal length of the lens; 𝑟𝑢 is the radial position of a point on the image plane. Also, we 

assume there are only radial effects for the camera distortion. The relationship between the 

points in undistorted and distorted coordinates can be depicted in a polynomial form: 

𝑥𝑢 = 𝑥𝑑 ∙ (1 + 𝑘1 ∙ 𝑟
2 + 𝑘2 ∙ 𝑟

4 + 𝑘3 ∗ 𝑟
6) 

𝑦𝑢 = 𝑦𝑑 ∙ (1 + 𝑘1 ∙ 𝑟
2 + 𝑘2 ∙ 𝑟

4 + 𝑘3 ∗ 𝑟
6) 

(6-2) 

𝑟𝑑
2 → 𝑟2 = 𝑥𝑑

2 + 𝑦𝑑
2 (6-3) 

where (𝑥𝑢, 𝑦𝑢)  and (𝑥𝑑, 𝑦𝑑)  are the corresponding points in undistorted and 

distorted coordinates, and 𝑟𝑑 is the radius in the distorted plane for point (𝑥𝑑 , 𝑦𝑑). Then, 

the map between undistorted and distorted images using the equidistant fisheye assumption 

is given as follows: 

(𝑥𝑢, 𝑦𝑢) → (𝑥𝑑 ∙
tan (

𝑟𝑑
𝑓
)

𝑟𝑑
𝑓

, 𝑦𝑑 ∙
tan (

𝑟𝑑
𝑓
)

𝑟𝑑
𝑓

) (6-4) 
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(𝑥𝑑 , 𝑦𝑑) → (𝑥𝑢 ∙
atan (

𝑟𝑢
𝑓
)

𝑟𝑑
𝑓

, 𝑦𝑢 ∙
atan (

𝑟𝑢
𝑓
)

𝑟𝑑
𝑓

) 

At the intersection, many vehicles move in orthogonal directions along a straight 

line. However, due to the fisheye effect, these straight lines turn to be curved in the 

distorted image. Therefore, by adjusting the value of the focal length, it is expected that a 

curve can be recovered to a straight line with the minimum least square error. Once 

recovered the focal length, the distortion coefficients 𝑘1, 𝑘2, and 𝑘3 are calculated with the 

mapping equation (6-2). 

The trajectories of the vehicles are extracted by tracking the pixel movement using 

the optical flow tracker with SIFT feature points. Then, a filter is applied to select the points 

that travel long enough distances without any lane change or turning. The filtered 

trajectories are marked in red and green in Figure 6-4. The curved trajectories in (a) should 

be straight lines going across the intersection. After estimating the parameters using the 

proposed auto-calibration method, the reprojected undistortion image is shown as (b). As 

can be seen from the figure, the trajectories are successfully corrected into straight lines. 
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6.1.3.2 BS-Based Object Detection 

One of the primary goals of this study is to design and deploy a perception method 

that is flexible and scalable for real-world applications. BS-based object detection is the 

most suitable method due to its data-free and robustness to different scenarios. However, 

all the existing BS algorithms are not capable of separating objects (e.g., vehicles) that keep 

stationary for a series of frames from the background, which is a commonly observed 

traffic scenario at a signalized intersection. In addition, to meet the requirement of 24/7 

traffic surveillance, a dynamic BS strategy is needed to adapt to the changes in weather 

and lighting conditions. To solve the aforementioned problems, we propose an innovative 

cascaded adaptive background subtraction algorithm based on Adaptive Frame Difference 

(AFD) [60] and a modified Gaussian Mixture Model (GMM). This algorithm can 

dynamically update the regions without objects and reserve the regions with objects so that 

much fewer trials are left in the background. The previous BS algorithms aim at only 

separating the moving objects, while our method tries to remove objects no matter whether 

they are moving or staying still. Also, the feature-based methods, such as LBSP [168], 

LOBSTER, and SuBSENSE [169], fail to distinguish the foreground because of the edge 

distortion in the fisheye images, while the proposed one performs robustly for the fisheye 

images. 

Figure 6-5 The cascaded structure of the background maintenance. 
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The proposed BS-based detection method has two major steps. The first step is 

background initialization, and the second step is background maintenance. In general, the 

task of both the background initialization module and the background maintenance module 

is the same, which is to generate dynamic background images. The background 

initialization module is more focused on background generation with a relatively short 

period of time and without initial input; the background maintenance module is more 

focused on high-quality background generation given a relatively reliable initial 

background image. 

For background initialization, we define 13 different zones based on the moving 

direction of the traffic flow and process the incoming image frames separately. Because 

the GMM algorithm only works for the moving foreground, at each zone, optical flow-

based movement detection is used to trigger the GMM module. Then, the GMM only 

updates the triggered frames. In this way, the slow-moving or stopped vehicles will not be 

recorded as the initial background. After all the zones are triggered, an initial background 

can be composited of the results from all the zones. 
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The existing AFD methods only update the region without moving objects, which 

fails to remove static objects from the background. Therefore, we modify it to only update 

the region without an object. We compare the current frame 𝐼 to the current background 𝐵 

and apply a threshold truncation to obtain a mask of the foreground 𝑀. The reverse of the 

mask 𝑀𝑏𝑔 is expected to be able to exclude the objects. The GMM modules try to model 

the distribution of pixels inside the image with N Gaussians, and each of them accounts for 

different image features and textures.  

The workflow of the cascaded structure shows in Figure 6-5. We combine the ADF 

and GMM methods into a cascaded structure to overcome the shortcomings of each 

individual method. The ADF accounts for choosing updated regions, and GMM is 

responsible for updating the regions. More specifically, the ADF module is used to obtain 

the background mask with fewer foreground trails and the primitive low-quality 

background 𝑦𝑡,1 . Then, the first GMM model 𝐺𝑀𝑀1  is applied in the second module, 

which takes the mask and defective background as the input and generates a relatively clean 

Figure 6-6 Chassis Center Estimation. (a) Projection error. (b) Illustration of 

contour center and chassis center. 
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background 𝑦𝑡,2. The third module is another AFD module, accepting an output 𝑦𝑡,3from 

the second GMM model 𝐺𝑀𝑀2  as the "background" to obtain the mask. 𝐺𝑀𝑀2  keeps 

being directly updated so that its result has the same global color distribution as the ground 

truth, and some mild blurs of shadow and vehicle are acceptable for this module. The trail 

Figure 6-7 Illustration of virtual fisheye image synthesis. (a) The stitched cubic 

camera image with 90-degree of FOV from each perspective. (b) The projection 

relation from hemisphere to the image plane synthesized fisheye image. (c) Raw 

fisheye image. (d) Undistorted image using real-world calibration parameters. 
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region from 𝑦𝑡,1 is identified and updated with the background 𝑦𝑡,2 from 𝐺𝑀𝑀1 by AFD. 

𝑦𝑡,3 can bring more robust information to the background in the color space while keeping 

the detail in 𝑦𝑡,2. The output 𝑦𝑡,4 is fed into the third GMM model 𝐺𝑀𝑀3 and the final 

background 𝑦𝑡 can be obtained.  

After adaptively generating the dynamic background, contours representing the 

detected objects can be calculated by subtracting the current frame from the background. 

Sometimes, the adjacent vehicles have conglutination which leads to bad detection. To 

further purify the detection result, post-processing is needed. First, the morphology 

transform is used to remove the burr, glitch, and some slight conglutination. Concave point 

detection is then used to eliminate severe conglutination. If a contour has more than one 

concave point and its size and shape satisfy the predefined threshold, the contour is 

identified as a conglutinated one. Finally, we connect the two most concave points so that 

the contour is cut into two sub-contours.  

6.1.3.3 Object Tracking 

The object tracker is developed based on the DeepSort algorithm, which is one of 

the most popular real-time object tracking methods. As the algorithm requires the bounding 

box input of the detected objects, we calculate the minimum bounding rectangle of the 

contours. As a result, the tracking module assigns consistent IDs for all the given bounding 

boxes. 

6.1.3.4 Localization 

Due to the camera distortion and projection error, the speed and orientation of the 

vehicles cannot be calculated accurately only using the detected position information. 
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Therefore, we use the average contour optical flow as the representation of the movement 

of the vehicles. Instead of only tracking the optical flow of the feature points (e.g., SIFT or 

Shi-Tomasi corner), which leads to unstable results, a dense optical flow calculation is 

needed. However, the dense optical flow calculation is computationally heavy and does 

not fit real-time applications. We downsample raw images to accelerate this process 

without sacrificing accuracy. 

The object detection is given using the contour representation as illustrated in the 

previous subsection. Then, the contour center can be easily estimated by calculating the 

center of the minimum bounding rectangle of the contour. Ideally, if the vehicle is right 

under the camera, the contour center point (the yellow point in Figure 6-6 (b)) aligns well 

with the chassis center point (the green point in Figure 6-6 (b)). However, due to the camera 

projection effect, we cannot directly use the contour center as the position of the vehicle. 

As shown in Figure 6-6 (a), the positioning error of a point with height ℎ is given by 

𝑑𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒×ℎ 

𝐻
, where 𝐻 is the height of the camera. Assuming a vehicle is a cube, a BEV 

camera can see around half of the vehicle outline pixels on the ground, which does not have 

any positioning error (ℎ = 0). Therefore, the overall positioning error of a vehicle can be 

approximated by equation (6-5). 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 =
𝑑𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 × ℎ 

2𝐻
 (6-5) 

The average projection height of a vehicle ℎ is approximated using equation (6-6). 

ℎ =
ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛

2
|cos (𝜃 − 𝜑)| +

ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛
2

 (6-6) 
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where 𝜃 is the position angle in the camera coordinate, and 𝜑 is the yaw angle of the 

vehicle calculated from the previous step. ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 are the maximum and minimum 

heights of a vehicle, respectively, which are the predefined parameters. 

This step is to project the corrected center points to the world coordinate using the 

calibrated camera parameters and the Haversine formulation. Assuming that the road 

surface is a plane in the 3D space, we project the points from the image plane into the road 

surface plane in the camera coordinate. Then, the Haversine formulation (11) gives the 

projection between the great-circle distance of two points and their longitudes and latitudes. 

𝑑 = 2𝑟 ∙ 

arccos (√𝑠𝑖𝑛2 (
𝜑2-𝜑1 

2
) + 𝑐𝑜𝑠𝜑1𝑐𝑜𝑠𝜑2𝑠𝑖𝑛2 (

𝜆2-𝜆1 

2
)) 

(6-7) 

6.1.4 Experiments 

6.1.4.1 BS-Based Detection Algorithm Validation 

Before implementing the proposed system in the simulation and real-world 

environments, we first validate the perception pipeline on CDnet 2014, an expanded 

change detection benchmark dataset, that is widely used to test BS-based algorithms. For 

the detection performance measurement, the confusion matrix is adopted as the metric. 

After applying the BS algorithms, the detected foreground (objects) is compared to the 

ground truth labels at the pixel level. The pixels of the overlapped region and non-

overlapped region are obtained so that the confusion matrix of each frame is available. To 

(𝜃, 𝑑) = card2pol(x, y) 
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compare the proposed algorithm with five state-of-the-art BS-based algorithms, we 

employed the following metrics: precision, recall, False Positive Rate (FPR), False 

Negative Rate (FNR), Percentage of Wrong Classifications (PWC), and F-1 score. 

Table 6-1 Dynamic background generation performance on CDNet2014 

Method Precision Recall FPR FNR PWC F1 

Our 

Method 

74.85% 82.35% 1.78% 1.13% 2.73% 78.42% 

GMM 83.03% 22.14% 0.29% 5.00% 4.97% 34.96% 

ViBe 89.84% 53.16% 0.39% 3.01% 3.19% 66.79% 

PBAS 85.79% 54.04% 0.57% 2.95% 3.31% 66.31% 

LOBSTE

R 

91.64% 69.51% 0.41% 1.96% 2.22% 79.05% 

SuBSEN

SE 

91.43% 79.18% 0.48% 1.34% 1.70% 84.86% 

The results are presented in Table 6-1. Although our algorithm does not excel in 

pixel-level precision, the correctly detected pixels suffice to form complete bounding 

boxes, ensuring the accuracy of object detection. Furthermore, out algorithm’s high recall 

rate guarantees no missed detections of objects. In comparison to the LOBSTER and 

SuBSENSE algorithms that have equivalent F1 scores, our algorithm requires significantly 

less computation. This advantage cannot be demonstrated in the CDnet 2014 dataset, as 

the image size is only 320 pixels by240 pixels. In actual traffic intersections, where smaller 

targets need to be detected, the image size will be larger, and LOBSTER and SuBSENSE 

algorithms may not support real-time detection. Additionally, it is worth noting that all the 
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objects in the CDnet 2014 dataset are all in motion, so the advantage of our algorithm in 

detecting stationary objects cannot be fully demonstrated. 

Table 6-2 BS-Based detection performance on simulation environment 

Method Precision Recall FPR FNR PWC  F1 FPS 

Our 

Method 

67.28% 77.99% 0.61% 0.35% 0.95% 72.24% 12.60 

GMM 57.59% 14.09% 0.17% 1.38% 1.52% 22.65% 25.66 

ViBe 70.18% 44.25% 0.30% 0.90% 1.18% 54.27% 55.81 

PBAS 57.65% 38.70% 0.46% 0.99% 1.42% 46.31% 10.78 

LOBSTER 71.91% 43.30% 0.27% 0.91% 1.16% 54.05% 3.68 

SuBSENSE 66.02% 76.96% 0.64% 0.37% 0.99% 71.07% 2.24 

 

Table 6-3 Vehicle tracking performance on simulation environment 

Method Low volume Medium volume High volume 

 MOTP MOTA MOTP MOTA MOTP MOTA 

Our 

Method 

82.11% 9.94 78.29% 11.43 76.90% 11.23 

GMM 29.04% 14.49 33.02% 15.64 33.10% 15.63 

ViBe 80.25% 10.49 72.74% 12.03 70.68% 12.94 

PBAS 49.06% 12.96 53.70% 12.76 50.72% 12.41 

LOBSTER 75.36% 10.68 73.36% 11.63 67.15% 12.23 

SuBSENSE 70.53% 10.2 62.70% 13.16 59.88% 12.1 
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6.1.4.2 Simulation Experiment 

We create a replicative environment same as the real-world target intersection using 

CARLA Simulator, which is an open-source simulator for autonomous driving research 

[170]. Using RoadRunner, an interactive editor for creating 3D scenes for modeling and 

testing autonomous driving systems [171], we manually draw the street map aligned with 

Google Earth according to the target intersection. Also, to simulate real traffic situations, 

the traffic signal phase and timing is set to match the one in the real world. 

As CARLA does not provide any fisheye camera module, a Cubic-to-Fisheye 

algorithm is applied to synthesize virtual fisheye images out of five different regular 

perspective cameras. The focus points of the five cameras are located at the cubic center, 

and their optical axes are perpendicular to each other. To ensure that there is no overlap 

and no deficiency in the synthesized image, every camera has a 90-degree of FOV so that 

all the images have aligned edges (see Figure 6-7 (a)). After that, we project pixels from 

the cubic surface onto a hemisphere. The hemisphere is determined by connecting all pixels 

to the cubic center, and the intersection is the projection point. With the hemisphere image, 

a fisheye image can then be generated using the polynomial fitting, as also illustrated in 

Figure 6-7 (b). After obtaining the synthesized fisheye camera, as shown in Figure 6-7 (c), 

we calibrate this virtual camera using the same parameters as the real-world camera. As 

seen in Figure 6-7 (d), the fisheye image can cover 180 degrees of FOV, and the outside 

blue circular ring is the skyline in the simulation environment.  

The object detection ground truth, or the bounding box, outlining the target object 

of interest (vehicles), can be obtained from the CARLA Application Programming 

Interface (API). By using inverse transformation, we could easily obtain the bounding box 
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in both the fisheye image and the undistorted image. Since BS-based methods typically 

suffer from high-density object situations, to demonstrate the effectiveness of our method, 

we simulated three different traffic volumes by controlling the number of vehicles in the 

intersection network: low volume, medium volume, and high volume. The low volume 

situation had 20 randomly spawned vehicles in the network, the medium volume had 42 

vehicles, and the high volume had 64 vehicles. We recorded 9000 frames for each vehicle 

volume to create the datasets. All vehicles moved with predefined vehicle autopilot mode. 

The synthesized dataset is generated at a frame rate of 10 with a dimension of 960 pixels 

by 960 pixels covering a 140 m by 140 m area.  

Our performance measurement is divided into two parts. For object detection, 

similar to the measurement on the CDnet 2014 dataset, we evaluate the pixel-level 

foreground (object) and background classification (see Table 6-2.). We compare the 

proposed algorithm with the other state-of-the-art BS-based detection algorithms such as 

GMM, ViBe, PBAS, LOBSTER, as well as SuBSENSE. For object tracking, Multiple 

Object Tracking Precision (MOTP) and Multiple Object Tracking Accuracy (MOTA) is 

adopted as the metrics (see Table 6-3).  

As presented in Table 6-2, our method outperforms other state-of-the-art BS-based 

algorithms in most metrics while maintaining a high frame rate. This can be attributed to 

its superior performance in detecting stationary objects. Compared to LOBSTER and 

SuBSENSE, our method exhibits better FPR and FNR. This could be due to the fact that 

feature-based methods are susceptible to distortion from fisheye cameras, leading to some 

foreground in the edge regions being misclassified as background. Although the average 

precision is not very high at the pixel level, it is sufficient for accurate detection and 
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localization applications. Moreover, our method can process incoming video in real-time, 

and GMM, ViBe, and PBAS can also meet real-time requirements. However, LOBSTER 

and SuBSENSE take four to five times longer to process the same video as our method. 

The tracking performance is shown in Table 6-3, where MOTA is measured in 

pixels. It is observed that as traffic volume increases, the performance of all algorithms, 

except for the GMM algorithm, decreases. However, our method achieves the best 

performance in all scenarios for all metrics. Also, because all other methods fail when 

vehicles stop at the intersection for red light, MOTP and MOTA only measure the frame 

when vehicles are moving. The MOTA of our method in the low-volume scenario is 9.94 

pixels, equivalent to 1.45 meters, and in the high-volume scenario is 11.23 pixels, 

equivalent to 1.63 meters in the real world. 

6.1.4.3 Real-World Experiment 

The RSPU is implemented and tested in a real-world environment at the 

intersection of University Avenue and Iowa Avenue, which has 3 to 4 lanes for each 

direction and requires at least a 50 m by 50 m detection coverage. The GRIDSMART bell 

fisheye camera is mounted at the northwest corner of the intersection, which can cover the 

whole intersection and detect incoming traffic from a different direction. The qualitative 

result of the detection shows in Figure 6-8, where Figure 6-8 (a) shows all the detected 

vehicles by the bounding boxes in a sample frame; Figure 6-8 (b) shows the detected 

trajectories after the tracking module. 

As it is difficult to acquire the ground truth position of all the vehicles in public 

traffic, the quantitative performance is only measured for the test vehicle. The test vehicle 

is a connected vehicle equipped with Real-Time Kinematic (RTK) GPS device. The RTK 
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positioning is the application of surveying to correct for common errors in the Global 

Navigation Satellite System (GNSS), which uses reference stations to enhance the 

measurement via the phase of the signal's carrier wave. Based on our previous examination, 

the system can achieve centimeter-level accuracy at the target intersection. Therefore, in 

this research, we use it as the real-world ground truth. Figure 6-8 (c) shows the collected 

trajectory from both the RSPU detection and the RTK ground truth. As can be seen from 

the figure, the detection points (in red) align well with the ground truth (in blue). The 

quantitative results are shown in Table 6-4.  



 126 

It should be noted that the average processing time of the RSPU is 90ms, and the 

average communication delay from the RSPU to the connected vehicle is 160ms. 

Compared to the MOTA in the simulation, all the following accuracy measurements are 

considered with such a large delay. The most accurate detection is achieved within the 

Figure 6-8 Qualitative Results for Real-world experiment. (a) Detected bounding 

boxes. (b) Detected trajectories. (c) Trajectory of the ego vehicle, ground truth in 

blue and detection in red. 
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range of 10 meters. Due to the radial distortion, it is expected the detection error increasing 

with the increase of the detection range. However, this does not always hold, as can be seen 

in Table 6-4. This is because of the communication delay and the feature of the intersection. 

For example, the average speed from the range of 30 to 40 meters is much higher than 20 

to 30 meters and 40 to 50 meters, as there is no stop line within the range. As a result, the 

accuracy in the range of 30 to 40 meters is lower than the others. 

Table 6-4 Quantitative results of real-world experiment 

Range 

(m) 
Overall 

0~ 

10 

10~ 

20 

20~ 

30 

30~ 

40 

40~ 

50 

50~ 

Accuracy 

(m) 

2.28 1.22 2.11 2.85 3.02 2.16 2.31 

6.1.5 Summary 

This section introduces an implementation of a real-time roadside perception unit 

using fisheye cameras, which detects and broadcasts vehicles’ movement to the connected 

devices. The perception pipeline consists of four major modules, including fisheye image 

undistortion, background subtraction-based object detection, object tracking, and object 

localization. For the roadside fisheye camera undistortion, we use an auto-calibration 

technique, and for detection, we have used an innovative cascaded structure BS algorithm. 

Our approach outperforms five existing BS-based detection algorithms in terms of F1 score 

and computation time when tested on CDnet 2014 benchmark. 

The system is implemented in the RSPUs in both simulation environments and real-

world environments. The CARLA-based simulation environment is a replica of the real-
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world environment, where we use the Cubic-to-Fisheye algorithm to synthesize the virtual 

fisheye camera with the same parameters as the real-world one. The results show that the 

proposed algorithm outperforms the state-of-art BS-based detection algorithms without 

compromising the computation efficiency. To our best knowledge, the proposed algorithm 

is the only one that is robust to different speeds of the objects and is readily implemented 

in real-time. In the real-world environment, we deployed the RSPU in a target intersection 

with 3 to 4 lanes in each direction. We use a connected vehicle equipped with an RTK GPS 

device to receive the detection broadcast and record the ground truth. The real-world 

experiment shows that our roadside perception system can achieve lane-level position 

accuracy for the whole target intersection. 

Multiple future steps are mapped out and discussed as follows. First, it is planned 

to broadcast the detection in the form of V2X standards, such as CAM, to improve the 

system's compatibility. Second, it is expected to have a better performance to use our 

method as an auto-labeling approach to providing ground truth data (maybe a bit noisy) for 

training the ANN-based model. Also, as the proposed system is flexible and scalable, we 

plan to deploy the system along a corridor to achieve a larger-scale roadside perception. 

Finally, it is intended to develop a corporative perception system fusing information from 

other roadside sensors (e.g., LiDAR) or onboard sensors to improve situation awareness.  
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6.2 Driver Behavior Modeling 

6.2.1 Introduction and Background 

Adaptive Cruise Control (ACC), as one of the most widely researched advanced 

driver-assistance systems (ADAS), has been deployed on more and more vehicles over the 

last decade [172]–[174]. The function of the ACC system is to control the ego vehicle's 

longitudinal speed so that it follows the leader with a user-selected speed or adaptively 

maintains a constant time headway. The ACC system has been demonstrated to improve 

Figure 6-9 Result of customer survey regarding ACC usage. 
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traffic-wise mobility, safety, and environmental sustainability [175]. Nevertheless, the 

existing ACC is normally an expert system where the control scheme is based on well-

tuned look-up tables, and only a few settings are available to the users. Those limited 

settings (e.g., long gap, medium gap, and short gap) may not always align well with the 

drivers’ preferences due to their aggressiveness or conservativeness. The diverse car-

following strategy may lead to an uncomfortable experience and reduce the trust in driving 

automation. As a result, the driver may adjust the setting frequently or even stop using it.  

To validate our observation, a survey targeting at ACC users has been conducted 

in January 2022, which covers 13 vehicle brands on the U.S. market that carry the ACC 

function (i.e., Ford, Honda, Hyundai, Jeep, KIA, Lexus, Lincoln, Mazda, Subaru, Tesla, 

Toyota, Volkswagen, and Volvo). The survey's sample size is 275 people, with 3.0% being 

between the ages of 18 and 24, 30.8% being between the ages of 25 and 34, 30.1% being 

between the ages of 35 and 44, 24.% being between the ages of 45 and 54, 10.1% being 

between the ages of 55 and 64, and 1.5% being older than 65. As presented in Figure 6-9 

(a), majority of the respondents use ACC on their vehicles. Among these ACC users, 38% 

Figure 6-10 System architecture: Digital twin framework. 



 131 

of them like to change the ACC gap setting during a trip, as shown in Figure 6-9 (b). Figure 

6-9 (c) illustrates a more important result: Among these drivers who like to change ACC 

gap setting, 69% of them change it multiple times during a single trip, which indicates that 

the current ACC setting needs more improvement for driver personalization. In addition, 

Figure 6-9 (d) shows the major factors influencing the driver to change the ACC setting 

include traffic condition, weather, personal mood, and road type. 

To improve the current expert system-based ACC, a more advanced ACC system 

that takes personalized behavior into consideration is imperative. Referring to [176], 

personalized driving style and preference can significantly impact drivers’ acceptance of 

driving automation. However, in the automobile industry, the personalization functions are 

still restricted to a complimentary level, such as seat ergonomics and personalized 

infotainment systems. 

In this study [177], we present a novel P-ACC framework that combines both 

offline and online learning. The offline learning is achieved through the Inverse 

Figure 6-11 System architecture: Offline learning (blue blocks), Online learning 

(orange blocks), Personalized controller (green blocks). 
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Reinforcement Learning (IRL) algorithm, which is trained from the naturalistic car-

following trajectories of individual drivers to infer their driving style and create a driving 

gap preference table (DGPT) that is used as a reference for the P-ACC system. Unlike other 

P-ACC methods that simply clone the driver's behavior from the historical data, our offline 

model takes into account the driver's task-specific preferences. The online learning 

component adapts the DGPT in real-time based on the driver's feedback through ACC 

overrides. This is achieved using Gaussian Process Regression (GPR) [178], which is a 

statistical method that can be used for model-free prediction and estimation tasks. The 

driver's feedback data is also used to update the offline personalization module as an 

incremental learning scheme. Our proposed P-ACC system provides a personalized driving 

experience for each driver, resulting in enhanced driving comfort and safety. 

6.2.2 Problem Formulation and System Architecture 

6.2.2.1 Digital Twin Framework 

 This subsection presents the digital twin framework of the P-ACC system. The 

flowchart of the proposed P-ACC system is presented in Figure 6-10. The system has two 

stages: modeling stage and control stage. Both stages have their corresponding tasks in 

the real world (deployed on the real vehicle) and the Digital Twin world (deployed on the 

cloud). In this paper, the proposed P-ACC system is a subset of the Mobility Digital Twin 

framework that was previously developed by authors of this paper [179]. 

Modeling Stage: The modeling stage happens when the driver operates the vehicle 

manually. Based on a rule-based logic, all the car-following events can be filtered out and 

transmitted to the Digital Twin cloud together with the environment information (e.g., 

weather conditions, road types, etc). The car-following events, represented as sequential 
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trajectory data, will be approximated using GMM on the Digital Twin cloud. The GMM 

distribution of a trajectory is regarded as the driver's driving style. Then, the new GMM is 

compared with the existing GMM distributions using the KL divergence metric. If it is 

close enough to one of the existing distributions, the trajectory data would be merged into 

the corresponding class. Otherwise, a new driver type will be created. As environmental 

factors also impact drivers' behaviors, different models are trained for different scenarios. 

For each scenario and each driver type, an IRL model will be trained to represent the 

driver's driving style. 

Control stage: The control stage happens when the driver activates the P-ACC 

driving automation. Before the system is activated, a short-term observation of the driver 

is updated to the Digital Twin cloud together with the current environment information. 

The short-term trajectory is also approximated using GMM and driver type will be 

determined by finding the maximum KL divergence of the existing distributions. Based on 

this driver type and scenario ID, the corresponding pre-trained model will be downloaded 

to the target vehicle. Next, multiple trajectories of the ego vehicle are generated to replicate 

the stored short-term trajectory, given the speed profile of the leader, using MPC with 

parameters in a predefined pool. The parameters that reproduce the closest trajectory are 

selected for the P-ACC controller. It should be noted that if the driver activates the P-ACC 

system recently, there is no need to re-classify the driver type or to conduct the MPC 

parameters adaptation again. Based on the current scenario, the corresponding model can 

be downloaded directly. 
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6.2.2.2 P-ACC With Online Adaptation 

Figure 6-11 shows the general system architecture of the proposed P-ACC 

framework. Different from Figure 6-10, where the personalization model only relied on the 

historical demonstration car-following trajectory (blue blocks in Figure 6-11), we 

introduce a novel approach to incorporate the driver's real-time feedback on the ACC 

system as a dynamic input to adjust the model in this work (orange blocks in Figure 6-11). 

Based on our literature review, no previous studies have considered the driver's real-time 

feedback on the ACC system. The physical layer of the framework is divided into the real 

world (vehicle) and the digital twin world (cloud), while the implementation process is 

divided into two phases: ACC OFF and ACC ON. 

At the ACC OFF phase, when the driver manually follows the lead vehicle, the 

system considers the trajectory as an expert demonstration and transmits it to the cloud 

along with environmental factors that could potentially impact driving behavior. On the 

cloud, the IRL algorithm assumes that the collected expert demonstration is near-optimal 

in terms of the Markov Decision Process (MDP) and infers the reward function that drives 

the driver's behavior. This reward function is then transferred to the DGPT as the control 

reference. 

At the ACC ON phase, when the driver turns on the automatic following mode, the 

personalized driving model (i.e., DGPT) is downloaded locally. The DGPT is a discrete 

table that records the relationship between the preferred following distance and its 

corresponding speeds. We employ GPR to represent the DGPT, allowing for continuous 

outputs that can be updated as new data points (driver's feedback) come. The DGPT is 

designed to describe the driver's preferred following distance at different speeds. The 
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controller (green blocks in Figure 6-11) maintains the distance to the lead vehicle. 

However, due to differences between the  scenario of demonstration trajectories and the 

current driving scenario, as well as changes in the driver's driving habits or mood, the driver 

may not always be satisfied with the current automated control. Therefore, the driver can 

provide feedback to the system by pushing the accelerator to shorten the car-following gap 

or brake pedals to lengthen the gap, leading to a takeover of the vehicle. These takeover 

segments are used to adjust the DGPT in real-time, responding to the driver's behavior. 

What's more, when the current ACC ON trip is completed, these takeover segments are 

sent back to the cloud to fine-tune the IRL model, improving the personalization of the 

system. 

6.2.2.3 Assumptions and Specifications 

In this study, we focus on modeling and controlling personalized car-following 

maneuvers based on states of the ego vehicle and its preceding vehicle. Although the real-

world ACC needs to manage both car-following stage and free-flow stage, the ACCs 

discussed in this section only include the car-following stage, i.e., we assume the leader of 

the ego vehicle is always present. Also, only the longitudinal movement is observed and 

controlled. The goal of this work is to design speed control strategy for the ego vehicle to 

satisfy the driver's preference. The remainder of this section specifies the mathematical 

formulation of the proposed system. 

𝑥 = (

𝑝
𝑣
𝑔
) (6-8) 
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𝑥̇ = (
𝑝̇
𝑣̇
𝑔̇
) = (

𝑣
𝑎

𝑣𝑓 − 𝑣
) = 𝐴(

𝑝
𝑣
𝑔
) + 𝐵 ⋅ 𝑎 + 𝐶 ⋅ 𝑣𝑓 (6-9) 

 

where 𝑝 and 𝑣 are the position and speed of the ego vehicle; 𝑔 is the distance gap between 

the ego vehicle and preceding vehicle; 𝑎 is the acceleration, which is the only control input 

of the dynamic system; 𝑣𝑓 is the speed of the preceding vehicle; 𝐴, 𝐵, and 𝐶 are linear 

coefficient matrices. As the speed of the preceding vehicle is determined by the driving 

style of the lead driver and downstream traffic, 𝑣𝑓  is regarded as an uncontrollable 

disturbance to the system. 

Because we define the static car-following preference as a function of the speed 

and desired gap, we focus on the dynamic in the speed-gap space, and the corresponding 

variables are updated in a discrete form: 

𝑣[𝑡 + 1] − 𝑣[𝑡] + 𝑎[𝑡] ⋅ Δ𝑡 + 𝜎𝑤 (6-10) 

𝑔[𝑡 + 1] = 𝑔[𝑡] + (𝑣𝑓[𝑡] − 𝑣[𝑡]) ⋅ Δ𝑡 +
1

2
+ 𝑎[𝑡] ⋅ Δ𝑡2 + 𝜎𝑔 (6-11) 

As shown in equation (6-10) and (6-11) we add Gaussian noises, 𝜎𝑤  and 𝜎𝑔 , denoting 

imperfectness of the driver's observation.  

It is assumed that the input of the system is acceleration, and the driver controls 

vehicle's speed based on his/her observation of the surroundings. We presume the driver's 

decision-making process is a Markov Decision Process (MDP) defined by a five-tuple 

{𝑆, 𝑈, 𝑇, 𝑟, 𝛾}where 𝑆  is the state space spanned by 𝑣  and 𝑔 ; 𝑈  is the one-dimensional 

action space of all possible acceleration of the ego vehicle; 𝑇 is the transition probability 
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determined based on equation (6-10) and (6-11); 𝑟 is the reward function that represents 

the driver’s personalized car-following style; and 𝛾 is the discount factor weighting the 

importance of the historical rewards; At each time step, the process in certain state 𝑣 and 

𝑔, and the driver may choose any action 𝑎. The process responds at the next time step by 

moving into a new state 𝑠′ based on 𝑇 . Notably, although the speed of the preceding 

vehicle, 𝑣𝑓, is considered in MDP, it can be observed while driving. It should be noted that 

we also assume the human driver is rational and his/her actions are optimizing a cumulative 

reward function formulated as follows: 

𝑣(𝜉) =∑  

𝑁

𝑡=0

𝛾𝑡 ⋅ 𝑟𝑡(𝑠) =∑  

𝑁

𝑡=0

𝛾𝑡 ⋅ 𝛼𝑇 ⋅ Φ(𝑠) (6-12) 

where 𝑁 denotes the time horizon, and 𝜉 denotes the trajectory of the ego vehicle. As seen 

in equation (6-12), the instantaneous reward 𝑟𝑡 is assumed to be expressed in a span of the 

reward basis Φ, whose dimension equals the total number of features, and 𝛼𝑇 stands for a 

vector of weight defining the linear combination. Additionally, it is assumed that the 

collected trajectory can reflect the drivers' driving style and that drivers are comfortable 

with their own driving style. 

6.2.3 Methodology 

Most existing studies classify driver type via explanatory definitions. For example, 

Chiyomi et al. classified drivers into five categories including extremist, flow conformist, 

planner, hunter/tailgater, and ultraconservative [180] based on drivers’ levels of 

aggressiveness/conservativeness. However, this assumption oversimplifies the logic 

behind drivers’ behaviors. For example, a newly licensed driver may present aggressive 
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behaviors due to lack of skills. Therefore, in this section, rather than defining driving 

behaviors with semantic meaning, we cluster them purely based on their car-following 

trajectory distributions. Specifically, all the trajectories of the car-following events are first 

approximated using GMM. Then, the GMM distribution of a new trajectory compares with 

the distributions of existing types of drivers on the cloud using the KL divergence metric 

as shown in the following equation (6-13}). KL divergence, also referred to relative 

entropy, is a metric for divergent one probability distribution is from another. 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑  

𝑥∈𝑋

𝑃(𝑥) ⋅ log (
𝑃(𝑥)

𝑄(𝑥)
)

= ∑  

𝑥∈𝑋

𝑃(𝑥) ⋅ log (𝑃(𝑥))

−∑  

𝑥∈𝑋

𝑃(𝑥) ⋅ log (𝑄(𝑥))

 (6-13) 

𝐷𝐾𝐿(𝑃, 𝑄) =
1

2
(𝐷𝐾𝐿(𝑃 ∥ 𝑄) + 𝐷𝐾𝐿(𝑄 ∥ 𝑃)) (6-14) 

where 𝑥 is the random sample in the trajectory space X; P(. ) and Q(.) are the probability 

of a sample under the trajectory GMM distribution P and existing driver type GMM 

distribution Q, respectively. ∑  𝑥∈𝑋 𝑃(𝑥) ⋅ log (𝑃(𝑥)) is the sample mean of weighted log 

probabilities. Because the KL divergence is not symmetric, we take the average of both the 

KL divergence from P to Q and the one from Q to P as the metric of distribution distance 

as shown in equation (6-14). Based on the KL distance, a rule-based classifier is defined in 

Algorithm 6-1. It should be noted that the number of gaussian distributions for GMM 

approximation and the KL distance threshold are two predefined parameters chosen based 

on empirical experience. The number of Gaussians keeps the balance between overfitting 
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and underfitting for trajectory distribution approximation; the KL distance threshold 

determines the resolution of the driver type classification. 

Algorithm 6-1: Driver Type Classification 

Data: New driver’s trajectory: 𝝃 = {𝜉0, 𝜉1, … , 𝜉𝑛}, GMM distributions of existing 

driver types: 𝑸 = {𝑄0, 𝑄1, … , 𝑄𝑚}, number of Gaussian: 𝑘, KL distance threshold: 𝜃 

Result: Updated GMM distributions of driver types: 𝑄′, Driver type of the new driver: 

𝐷𝑇_𝑖𝑛𝑑𝑒𝑥 

1: Approximate the distribution of 𝜉, 𝑄𝑛𝑒𝑤, using k-GMM 

2: min_KL_distance = Inf 

3: min_KL_distance_index = -1 

4: if 𝜉 is empty then 

5: add 𝑄𝑛𝑒𝑤 into 𝑄 

6:         min_KL_distance_index = 0 

7: end 

8: else 

9:        for 𝑄𝑖 in 𝑄 do 

10:               Calculate current_KL_distance 

11:               if current_KL_distance < min_KL_distance then 

12:                      min_KL_distance = current_KL_distance 

13:                      min_KL_distance_index = i 

14:               end 

15:        end 
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16:        if current_KL_distance > 𝜃 then 

17:               add 𝑄𝑛𝑒𝑤 into 𝑄 

18:               min_KL_distance_index = i+1 

19:        end 

20:        else 

21:               Update 𝑄min_KL_distance_index  

22:        end 

23: end 

24: Q’=Q 

25: DT_index = min_KL_distance_index 

Based on observations of both simulation and naturalistic data, even the same driver 

can present completely different driving styles in different scenarios. For example, an 

experienced driver with poor vision can be aggressive with good lighting conditions (e.g., 

daytime), while being very conservative with bad lighting conditions (e.g., evening). 

Moreover, the transition from one mode to another can be subtle and discrete. In addition, 

according to the customer survey, the factors influencing the driver to change the ACC 

setting include traffic condition, weather, personal mood, and road type. Therefore, in this 

section, we train different car-following models for different scenarios of different 

environmental factors. Specifically, vehicle type, road type, weather conditions (i.e., 

precipitation, visibility, clouds), and time-of-day (i.e., daytime, nighttime) are the factors 

to consider. Using the OpenWeatherMap API [181], the weather information can be 

collected given the position and time. All the environmental factors are then granularized 
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into subcategories. If new driving data is collected under the corresponding subcategory, 

the car-following model will be updated. 

The discrete 2-dimensional speed-gap state space is defined based on their range 

for normal car-following tasks, where 𝑣 extents from 0 to 36m/s with the interval of 0.5m/s, 

and 𝑔 extents from 0 to 120m with the interval of 0.5m. As discussed previously, it is 

assumed that the driving behavior, namely, the determination of the control input 

(acceleration), is based on optimizing a cumulative reward function defined by equation 

(6-12). The reward function is a linear combination of 𝑁-dimensional reward basis Φ. As 

recommended by [93], we define a Gaussian kernel in the reward basis to further improve 

the nonlinear representation ability for approximating the reward function. Each entry, Φi, 

in the reward basis vector Φ corresponds to a kernel function of a state s and the other state 

si, in the discrete state space, as shown in equation (6-15).  

Φ(𝑠) = [

Φ1(𝑠)
Φ2(𝑠)
⋯

Φ𝑛(𝑠)

] = [

K(𝑠, 𝑠1)

K(𝑠, 𝑠2)
⋯

K(𝑠, 𝑠𝑛)

] (6-15) 

 

Figure 6-12 The training process of the maximum entropy IRL (Max-Ent IRL) used 

for static car-following preference modeling. 
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where K is the Gaussian-like kernel, and n is the total number of discrete states. The kernel 

function measures the relationship between s and si shown as follows: 

K(𝑠, 𝑠𝑖) = exp (−
|𝑠 − 𝑠𝑖|

2

𝜎2
) (6-16) 

|𝑠 − 𝑠𝑖|
2 = (𝑣 − 𝑣𝑖)

2 + (𝑔 − 𝑔𝑖)
2 (6-17) 

 

𝜎 controls the size of the kernel, which is chosen manually according to the resolution of 

the state space to achieve a balance between overfitting and underfitting. 

Conforming to the maximum entropy IRL (Max-Ent IRL) algorithm presented by 

Ziebart et al. [92], the probability of a trajectory is proportional to the sum of the 

exponential rewards accumulated along with the trajectory as described in equation (6-18). 

𝑝(𝜉 ∣ 𝛼) =
1

𝑍(𝛼)
exp (∑  

𝑡

𝑅𝛼(𝑠𝑡))

=
1

𝑍(𝛼)
exp (∑  

𝑡

𝛼𝑇𝚽(𝑠𝑡))

 (6-18) 

 

where 𝑍(𝛼), named partition function, which equals to ∑  𝜉 exp (∑  𝑡 𝑅𝛼(𝑡)). The maximum 

log-likelihood approach is then used upon the demonstrations with respect to the weight of 

the reward function: 

𝐿(𝛼 ∣ 𝜉) = 𝑚𝑎𝑥
𝛼
 ∑  

𝜉

log 𝑝(𝜉 ∣ 𝛼) (6-19) 
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Thereby, the gradient of the weight, 𝛼, can be derived in the following form: 

∇𝛼𝐿 =∑  

𝜉

𝑝(𝜉)∑  

𝑠∈𝜉

Φ(𝑠) −∑  

𝜉

D𝑠∑ 

𝑠∈𝜉

𝚽(𝑠) (6-20) 

The first term, ∑  𝜉 𝑝(𝜉)∑  𝑠∈𝜉 Φ(𝑠) = 𝑓 , is called expected feature count. The 

second term, ∑  𝜉 D𝑠 ∑  𝑠∈𝜉 𝚽(𝑠) = 𝑓，̅ is called empirical feature count, and D𝑠 is the state 

visitation frequency. 

The training process is demonstrated in Figure 6-13. Initially, the reward weight, 

𝛼, is randomly generated, and the expected feature count, 𝑓, can be derived following the 

first term of the Equation (6-20), where 𝑝(𝜉)  can be estimated by counting the state 

visitation frequency of the demonstration trajectories. Then, at each iteration, the value 

iteration algorithm [182] is applied to approximate the optimal policy 𝜋∗(𝑠, 𝑎) and the 

value function 𝑣(𝑠) based on current reward. Theoretically, the state visitation frequency, 

D𝑠  can be derived by traversing the state space exhaustively given a predefined time 

horizon, the distribution of initial state, transition probabilities (car-following dynamic), 

and an optimal policy under the current reward function [92]. However, this is extremely 

computation heavy, especially when the state space is large and/or the time horizon is long. 

To solve this, we approximate D𝑠via the Monte Carlo method. Based on the optimal policy 

Figure 6-13 Illustration of drivers’ dynamic preference. 
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at the current iteration, a number of trajectories are generated randomly. The initial state 

and time horizon of those trajectories should also match the distribution of the 

demonstration randomly. 

Although a control policy 𝜋∗(𝑠, 𝑎) can also be derived during the training process 

as a byproduct using the value iteration algorithm, it can not be used directly as a P-ACC 

controller. A major reason is that the demonstration trajectory cannot fully cover the state 

space, and the performance of the learned policy cannot be guaranteed. Instead of the end-

to-end manner, MPC is implemented later to track the value of IRL speed- 𝑔desired  table. 

The static driving behavior (i.e., the preferred gap at different speeds) is calculated using 

equation (6-21) from the recovered reward function 𝑟. Also, a low pass filter is applied 

afterwards to ensure smoothness. 

𝑔desired (𝑣) = arg 𝑚𝑎𝑥
𝑔
 𝑟(𝑣) (6-21) 

The Model Predictive Control (MPC), also known as Receding Horizon Control 

(RHC), is a well-used model-based optimal control scheme that involves repeatedly 

solving a constrained objective function of control efforts, disturbances, and constraints 

over a moving horizon to calculate control input. It is widely used in automobile control 

Figure 6-14 Flowchart of online DGPT adaptation algorithm. 
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tasks and has been proven to be accurate and robust. In this section, we adapt MPC in a 

linear quadratic form to keep a balance between the convergence speed of the tracking error 

and control effect. The optimization problem is formulated as follows: 

𝑚𝑖𝑛J =
1

2
∑  

𝑀−1

𝑡=0

{(𝑔[𝑡] − ℎ[𝑡])𝑇 ⋅ 𝑄 ⋅ (𝑔[𝑡] − ℎ[𝑡])

+𝑎𝑇[𝑡] ⋅ 𝑅 ⋅ 𝑎[𝑡])}

+
1

2
(𝑔[𝑀] − ℎ[𝑀])𝑇 ⋅ 𝑄 ⋅ (𝑔[𝑀] − ℎ[𝑀])

 s.t. (3) and (4) 

𝐴𝑐𝑐𝑚𝑖𝑛 ⩽ 𝑎[𝑡] ⩽ 𝐴𝑐𝑐𝑚𝑎𝑥
𝑔[𝑡] ⩾ 𝐺𝑎𝑝𝑚𝑖𝑛

 (6-22) 

where M is the optimal control horizon; ℎ[𝑡] is the desired gap to be tracked; Q and R are 

the diagonal matrices, respectively, defining weights of the objective function to be 

selected adaptively based on dynamic preference of the target driver; [𝐴𝑐𝑐𝑚𝑖𝑛, 𝐴𝑐𝑐𝑚𝑎𝑥] is 

the range of acceleration that the ego vehicle can achieve, and boundary values can vary 

with respect to the vehicle speed. 𝐺𝑎𝑝𝑚𝑖𝑛 is the safety gap to avoid collisions. 

The controller's goal is to direct the vehicle to follow its leader with the desired gap, 

which is a function of speed given by a speed- 𝑔desired  table learned from IRL. The table 

represents static preference. In other words, if the controller can maintain the desired gap 

as the equilibrium, it would best satisfy the driver's preference. On the other hand, if the 

vehicle's car-following state is off from the equilibrium, how the vehicle is controlled to 

converge is called dynamic driving style. As introduced previously, we assume the car-

following dynamic as a discrete linear system, and the controller is chosen to be an MPC 

with a linear quadratic objective function. The advantage using the (linear quadratic) LQ 

form of the objective function is that the control input can be easily obtained by solving 
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the algebraic Riccati equation [154] recursively. Because the control input/system dynamic 

is parameterized by Q and R in equation (6-22), and they keep balance between the speed 

of convergence and the effort of control, it is possible to change Q and R to adapt the 

driver's dynamic preference. 

The parameter adaptation process is based on short-term observations of the driver. 

Specifically, there is a set of parameter pairs in a candidate pool. When conducting 

parameter adaptation, a short-term human-driving trajectory is collected as a benchmark, 

and each parameter pair is used to reproduce the same trajectory given the information of 

the front vehicles. Then, the candidate with the smallest Mean Square Error (MSE), 

compared to the benchmark, is selected for P-ACC. Because solving the algebraic Riccati 

equation is relatively efficient, in practice, it is still tractable to have a set of a large number 

(50) of candidates. 

Compared to the naturalistic car-following data that is used for training the IRL 

model, the online feedback data usually has a very short time period and is distributed 

sparsely in the time domain. Therefore, preprocesses are required to use this data to 

maintain the DGPT, as illustrated in blue blocks of Figure 6-11. 

First, a behavior filter is needed to ensure that only necessary updates are made to 

the DGPT since drivers' takeover behaviors can be very noisy and may only last for a short 

duration or have small inputs. Second, we need to infer the preferred steady state that the 

driver wishes to achieve through a short period of takeover trajectory. Intuitively, this 

steady state should correspond to the state when the driver stops the takeover. However, 

based on extensive experiments and observations, we found that this assumption is not 

accurate. Drivers may anticipate or prolong takeover behavior based on the speed 
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difference with the preceding vehicle, or they may achieve a steady state through multiple 

takeovers. Therefore, a robust prediction mechanism is needed to determine the steady state 

that needs to be updated. Finally, the DGPT may fall into an unreasonable range due to 

emergency situations or driver's mistakes, leading to potential safety hazards. Therefore, a 

safety space is defined for the DGPT, and a safety filter is applied to ensure that the DGPT 

remains bounded within this safe space. 

As demonstrated, the prepossessing has the potential to be a highly intricate system. 

In this study, we propose a simplified heuristic algorithm that adheres to the 

aforementioned workflow in order to validate its effectiveness. The algorithm is shown in 

Algorithm 1. v and g are the current speed and gap; 𝑣𝑓 is the current speed of the preceding 

vehicle; 𝑝 is the takeover status; 𝑝𝑡 is the takeover time; 𝑃𝑇  is minimum takeover time; 

𝐾𝑇is the coast-down coefficient; 𝑉𝐷 is the maximum speed difference; Safe_TG_max and 

 Safe_TG_min are the safety time gap bounds; 𝑣𝑜𝑢𝑡and 𝑔𝑜𝑢𝑡are predicted steady state 

feedback. 

Algorithm 6-2: Driver’s Feedback Preprocessing 

Data:  

Input: DGPT, 𝑣,  𝑣𝑓, 𝑔, 𝑝, 𝑝𝑡 

Parameters: 𝑃𝑇, 𝐾𝑇, 𝑉𝐷, window_size, Safe_TG_max, and  Safe_TG_min 

Result: 𝑣𝑜𝑢𝑡, 𝑔𝑜𝑢𝑡 

1: for each iteration do 

2:        if not 𝑝 then 

3:              if (𝑣 − 𝑣𝑓) ≥ 𝑉𝐷 or 𝑝𝑡 ≤ 𝑃𝑇 then 
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4:                      𝑢𝑝𝑑𝑎𝑡𝑒_𝑓𝑙𝑎𝑔=False 

5:      end  

6:              else 

7:                     𝑢𝑝𝑑𝑎𝑡𝑒_𝑓𝑙𝑎𝑔=True 

8:              end 

9:              if 𝑢𝑝𝑑𝑎𝑡𝑒_𝑓𝑙𝑎𝑔 then 

10:                      if 𝑣𝑓 ≥ 𝑣 then 

11:                             𝑔𝑑𝑒𝑠𝑖𝑟𝑒 = 𝑔 

12:                      end 

13:                      else 

14:                             𝑔𝑑𝑒𝑠𝑖𝑟𝑒 = 𝑔 (𝐾𝑇 + (𝑣 − 𝑣𝑓)) 

15:                      end 

16:                      𝑣𝑜𝑢𝑡 = 𝑣 

17:                      𝑔𝑜𝑢𝑡 = max (𝑔𝑑𝑒𝑠𝑖𝑟𝑒, Safe_TG_min) 

18:                      𝑔𝑜𝑢𝑡 = min (𝑔𝑜𝑢𝑡, Safe_TG_max) 

19:               end 

20:        end 

21: end 

Gaussian processes extend multivariate Gaussian distributions to infinite 

dimensionality. They are a form of supervised learning and the training result represents a 

nonlinear mapping, 𝑓−𝐺𝑃(𝑧): 𝑅
𝑑𝑖𝑚(𝑧) → 𝑅. Here, the dimension of the input vector is 1. 

The mapping between the input vector z and the function value 𝑓−𝐺𝑃(𝑧) is accomplished 
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by the assumption that 𝑓−𝐺𝑃(𝑧) is a random variable and is jointly Gaussian distributed 

with 𝑧, which is also assumed to be a random variable [183]. 

The configuration of the GPR model includes selecting the model regressors, the 

mean function, and the covariance function (i.e., kernel function). In this study, we apply 

a commonly used zero-mean and the squared-exponential covariance function that relates 

two sample input vectors 𝑧𝑖 and 𝑧𝑗: 

𝑐(𝐳𝑖 , 𝐳𝑗) = 𝜎𝑗
2exp (−

1

2
(𝐳𝑖 − 𝐳𝑗)

𝑇
𝑃−1(𝐳𝑖 − 𝐳𝑗)) + 𝜎𝑛

2𝛿𝑖𝑗 (6-23) 

where 𝜎𝑖𝑗 = 1 if i = j and 𝜎𝑖𝑗 = 0otherwise, and 𝑃 = diag [𝑙1
2, … , 𝑙dim (𝐳)

2 ]contains the 

characteristic length scale for each dimension of the input vector. The hyperparameters of 

the covariance function 𝜃 = [𝜎𝑓 , 𝜎𝑛, 𝑙1, … , 𝑙dim (𝐳)]
𝑇
include the measurement noise 𝜎𝑛,the 

Figure 6-15 Example trajectories of the naturalistic driving data collected by our 

test vehicle in Ann Arbor, MI (left) and Mountain View, CA (right). 
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process standard deviation 𝜎𝑓, and the characteristic length scales, which are learned by 

maximizing the likelihood of the observation. 

6.2.4 Numerical Experiment 

We use a Lexus prototype vehicle to collect naturalistic driving data for training the 

P-ACC model. The data is collected from Michigan and California, and two example 

trajectories are demonstrated in Figure 6-15. The status of the preceding vehicle is from 

the ACC radar equipped on the prototype vehicle, and only the driving events containing 

car-following maneuvers are picked out from the raw data for training and validation. Also, 

Figure 6-16 Simulated trajectories of numerical experiments. 
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the car-following trajectories are down sampled and synchronized at 10Hz. Because Max-

Ent-IRL is applied to recover the driver's preference, it is expected that the trajectories 

should cover the whole range of speed in the state space (extents from 0 to 35m/s). The 

car-following events at different speed ranges are selected.  

The recovered reward in the speed-gap space, using IRL, is presented on Figure 6-

17 (a), where dark area (low reward) in the figure means the driver is very unhappy with 

the corresponding states which the driver always wants to avoid. The reason why the 

reward is lower than other unfavorable states is that those are the beginning of the new car-

following events due to cut-in by others. Therefore, it is expected that if more trajectories 

are collected, the effect of the beginning states would be smaller. The speed- 𝑔desired  table 

is presented on Figure 6-17 (b). As seen from the figure, the desired gap increases as the 

ego vehicle speeds up. 

After IRL training and MPC parameter adaptation, three leader speed profiles, with 

different speed ranges and characteristics, are chosen for validation, which are shown as 

Figure 6-17 Static driving preference from IRL modeling: (a) recovered reward 

function from naturalistic driving data using IRL, (b) smoothed DGPT. 
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the first three subfigures in Figure 6-16. The car-following trajectories are calculated based 

on the trained P-ACC model given different leader speed profiles. Then, the root mean 

square percentage error (RMSPE) metric, as defined in equation (6-24), is applied for both 

speed and gap to measure the reproduce-ability of the proposed P-ACC system. 

RMSPE (𝑥) = √
∑  𝑡 (𝑥̂[ℓ] − 𝑥[𝑙])2

∑  𝑡 𝑥[𝑙]2
 (6-24) 

where 𝑥̂ represents the simulated trajectory based on P-ACC model or the baseline model; 

𝑥 is the actual trajectory that the ego vehicle drive. The RMSPE metric is a measure of how 

close one trajectory is to another along each time step.  

Figure 6-18 Human driver vs. P-ACC. 
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For comparison, we implemented the widely used ODE-based method, the 

Intelligent Driver Model (IDM) [184], as the baseline controller, which is defined by 

equation (6-25) and (6-26). 

𝑣̇ = 𝑎 (1 − (
𝑣

𝑣0
)
𝛿

− (
𝑠∗(𝑣, 𝑣 − 𝑣𝑓)

𝑔
)

2

) (6-25) 

𝑠∗(𝑣, 𝑣 − 𝑣𝑓) = 𝑠0 + 𝑣 ⋅ 𝑇 +
𝑣 ⋅ (𝑣 − 𝑣𝑓)

2√𝑎𝑏
 (6-26) 

The lower six plots in Figure 6-16 show the simulated speed and gap trajectories of 

the proposed P-ACC and IDM compared to the real data. As observed from the figures, the 

proposed P-ACC can reproduce the speed and gap trajectories successfully. However, due 

to the linear control feedback of the proposed P-ACC, there are oscillations and overshoots. 

Table 6-5 lists the quantitative results measured using RMSPE.  From the table, we can see 

that the proposed P-ACC has better trajectory reproduce-ability than IDM. However, due 

to the imperfectness and randomness of human driving, a low RMSPE does not always 

mean good performance. An example is presented in Figure 6-18. The blue trajectory is 

Figure 6-19 Human-in-the-loop simulator. 
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from the human driver, and the orange trajectory is from the P-ACC. In this experiment, 

driver follows the leading vehicle with a stepwise slowdown pattern. As can be observed, 

the P-ACC strictly follows the desired gap learned from IRL. However, the human driving 

trajectory has large oscillation. As a result, the RMSPE is not small. 

Table 6-5 Quantitative results of numerical simulation 

 

Speed RMSPE Gap RMSPE 

Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 

IRL 6.4% 8.7% 25.4% 20.9% 63.4% 35.0% 

IDM 7.8% 10.5% 25.7% 26.6% 71.1% 39.1% 

Improvement 17.9% 17.1% 1.7% 21.4% 10.8% 10.5% 
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6.2.5 Simulation Study 

Game engines have been widely used by software developers to develop video 

games, which normally include a physics engine, a rendering engine, and a scene graph to 

manage multiple game elements (e.g., sound, threading, scripting, and models). Very 

recently, game engines have been adopted by other areas than video gaming, where the 

automotive industry becomes one of the major beneficiaries among all. This emerging 

technology has been used to simulate various advanced vehicular technologies [185], 

including autonomous driving [186], [187], cooperative driving [109], human-machine 

interface [188], and driver behavior modeling [188], [189]. 

Figure 6-20 Three simulated weather conditions in the game engine: Clear Sky 

(Day), Clear Sky (Night), and Foggy. 
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In this section, we conduct human-in-the-loop simulations on the game engine-

based driving simulator. This platform is built with the Unity game engine and a Logitech 

G27 Racing Wheel (see Figure 6-21). The simulation environment has a three-lane freeway 

scenario with flexible weather conditions. The driver may experience the change in weather 

both visually and aurally as shown in Figure 6-21. During the test, the driver can choose to 

either drive the ego vehicle manually, or drive with P-ACC by monitoring the automation 

and pressing the acceleration pedal or brake pedal when he/she feels uncomfortable. 

For each driving test, a speed profile of the leading vehicle is required to define a 

car-following scenario. The speed profile has the following requirement:   

• To avoid being weary during the test, each driving cycle is set to be 300 seconds. 

• It is expected to collect the demonstration trajectory covering as much the range of 

speed as possible for training the IRL model. 

• The speed profile of the leading vehicle should be close to real-world driving. 

• The scenario has to be random so that the test driver cannot predict what would 

happen. 

To meet the above four requirements, we develop a stochastic scenario generation 

approach to synthesize the speed profile for the leading vehicle. First, a set of short 

Figure 6-21 Driver’s interruption during the trip. 
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trajectory segments are sampled from naturalistic driving data. Then, the high-level random 

speed sequence is generated. Each element of the sequence defines an average speed for a 

period of time. Next, based on the random speed sequence, the trajectory segments with 

corresponding average speed are randomly selected and concatenated together. Finally, a 

filter is applied to ensure the acceleration/deceleration of the synthesized speed profile is 

bounded as required. Because each driving cycle is only 300 seconds, and the drastic 

change in speed may lead to abnormal driving behaviors, the test drivers need to take 

multiple driving cycles, and each of them covers a different speed range.  

There are five drivers involved in the P-ACC test. Four of them experience both 

the modeling stage and control stage in different scenarios. The rest one driver experiences 

only the control stage. In the control stage, four drivers monitor the system on the screen 

and react by pressing the gas pedal or brake pedal if he/she feels uncomfortable. The last 

driver is observed on a short-term trajectory, and then, based on the driver type 

classification and scenario defined by environmental factors, the most suitable model is 

downloaded and applied. 

Figure 6-22 shows the  speed- 𝑔desired table of Driver A learned from IRL in three 

different scenarios defined by environmental factors. According to the figure, Driver A 

likes to maintain a smaller gap in the clear sky (day) condition, a medium gap in the clear 

Figure 6-22 Static preference of Driver A in three simulated weather conditions. 
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sky (night) condition, and a larger gap in the foggy weather condition. This implies that, 

when the driving condition (e.g., visibility) is relatively good, Driver A drives more 

aggressively. What's more, in foggy weather, the desired gap at around 15m/s differs from 

the gap at it's neighboring speed. It reveals that the driver does not always behave optimally 

and coherently  as expected, and this imperfection can be observed even more significantly 

in bad weather conditions. 

We use Percentage of Interruption (PoI) and Number of Interruption-per-Minute 

(NIM) to quantitatively measure the driver's comfort and trust in the P-ACC system. PoI 

denotes the time percentage when the driver steps onto the acceleration pedal or brake 

pedal, and NIM denotes the number of times the driver steps onto the pedals. The results 

are presented in Table 6-6, and example trajectories are shown in Figure 6-21. As seen 

from the table, the PoI has been greatly reduced, which indicates the drivers are satisfied 

with automatic car-following based on the proposed P-ACC. Also, the less interruption of 

Driver E is untrained. This proves the effectiveness of the KL-divergence-based driver type 

classification module. 
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Table 6-6 Results of Human-in-the-Loop simulation: Percentage-of-Interruption 

(PoI) during a 300-Sec trip 

Driver P-ACC IDM Improvement 

A 3.4% 18.3% 81.4% 

B 2.4% 15.6% 84.6% 

C 1.9% 9.7% 80.4% 

D 3.4% 12.0% 71.6% 

E (Untrained) 3.7% 14.6% 74.8% 

To validate the effectiveness of the online adaptation function, we test four different 

combinations of controllers: Predefined, Predefined + Online Adaptation, IRL, and IRL + 

Online Adaptation. The Predefined ACC controller involves the driver choosing a constant 

time headway from high (4s), medium (3s), and low (1s) levels as the control reference, 

which is similar to the ACCs currently equipped on commercial vehicles. The Predefined 

+ Online Adaptation setup involves the driver choosing a constant time headway as the 

control reference but incorporating an online adaptation algorithm to update the control 

reference table based on real-time feedback, achieving a certain degree of personalization. 

IRL involves using the DGPT trained through offline IRL to control the vehicle, which has 

been shown in our previous studies to significantly improve drivers' comfort and trust in 

the system compared to ACC without personalization. Finally, IRL + Online Adaptation is 

the complete proposed framework, which uses the DGPT obtained through offline IRL as 

the initial control reference to control the vehicle and incorporates an online adaptation 

algorithm to continuously refine personalization based on real-time feedback. 
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Table 6-7 Effectiveness of online adaptation 

  

Predefined Predefined + 

Online 

Adaptation 

IRL IRL + Online 

Adaptation 

  PoI NIM PoI NIM PoI NIM PoI NIM 

Drive

r 1 

Seen 14.1% 620 2.9% 3.0 17.6% 4.7 4.7% 3.3 

Unseen 13.3% 7.0 7.3% 4.7 17.1% 5.0 10.6% 3.0 

Drive

r 2 

Seen 12.0% 5.3 3.7% 4.7 4.1% 6.3 9.3% 4.3 

Unseen 6.7% 5.7 7.8% 7.0 5.6% 5.3 11.2% 4.7 

Drive

r 3 

Seen 35.4% 29.3 10.9% 15.7 31.4% 11.0 3.2% 3.0 

Unseen 17.0% 12.7 3.1% 6.7 25.9 % 13.7 11.3% 9.0 

Drive

r 4 

Seen 26.0% 5.7 10.4% 4.0 3.6% 1.7 2.6% 13 

Unseen 21.9% 5.3 10.0% 3.0 8.7% 2.7 2.4% 13 

Drive

r 5 

Seen 29.8% 16.0 13.8% 10.3 16.3% 7.3 10.8% 6.3 

Unseen 

26.8

% 

143 11.6% 4.3 14.9% 6.0 93% 4.3 

Average 20.3% 10.7 8.2% 6.3 14.5% 6.4 75% 4.1 
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6.2.6 Summary 

In this study, we have introduced the design of a personalized car-following system, 

namely P-ACC system. We have first proposed a driver type classification approach based 

on the KL divergence measurement under the approximated GMM trajectory distributions. 

Then different scenarios are determined by granularizing the environmental factors such 

as road type and weather conditions. Next, for each scenario, and for each driver type, the 

model-based MaxEnt-IRL has been applied to learn the static driving preference, which is 

represented by the speed- 𝑔desired  tables. Based on the static driving preference, the 

adaptive MPC controller has been designed so that the ego vehicle can maintain the 

preferred gap with its leader. The parameters of the controller are able to adapt to the target 

driver's driving style based on short-term observations. The numerical experiments show 

that the proposed system can closely reproduce the real-world naturalistic driving 

trajectory. The performance of the P-ACC system has also been tested using a game 

engine-based human-in-the-loop simulator. To quantify the level of trust and comfort, PoI 

is used as the metric. The results show that for both the driver who gets trained directly 

using his or her own demonstration and the driver who is only providing the short-term 

trajectory, the PoI metric is reduced by at least 71% compared with the well-used IDM-

based ACC. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

This dissertation has extensively explored the domain of intelligent transportation 

systems, particularly focusing on the complex interactions and cooperation between 

demand and supply as well as Connected and Autonomous Vehicles (CAVs) and non-

CAVs. It has proposed a comprehensive cooperative framework which aims to harmonize 

the decision-making of agents in multi-modal transportation environments, on both 

macroscopic and microscopic levels. This significant step forward has allowed a more 

holistic exploration and understanding of cooperation in transportation systems. 

At the macroscopic level, the dissertation has delved into the realm of shared 

automated mobility applications and has also studied dispatching and scheduling 

algorithms for battery electric truck fleets. The aim is to enhance operational efficiency, 

which is a key factor in creating sustainable and effective transportation systems. 

At the microscopic level, the dissertation introduced a novel corridor-wise ramp 

management system. This has the potential to improve traffic flows and efficiency in mixed 

traffic conditions. To further address the complexities of mixed traffic, this dissertation 

ventured into two important research directions: infrastructure-based sensing and driver 

behavior modeling. The former enhances detection and monitoring capabilities, thereby 

leading to improved decision-making and system management. The latter aims to better 

understand and predict human actions in mixed traffic scenarios, leading to improved 

traffic flow management. 
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7.2 Selected Publications Resulting from This Research 

[1] Dongbo Peng, Zhouqiao Zhao, Guoyuan Wu, and Kanok Boriboonsomsin, Bi-

Level Fleet Dispatching Strategy for Battery-Electric Trucks: A Real-World Case 

Study, Sustainability, vol. 15, issue 2, page 925, 2023. 

[2] Jiahe Cao, Zhouqiao Zhao, Guoyuan Wu, Matthew J Barth, Yongkang Liu, 

Emrah Akin Sisbot, and Kentaro Oguchi, Real-Time Adaptive Background 

Subtraction for Traffic Scenarios at Signalized Intersections Based on Roadside 

Fish-Eye Cameras, IEEE 25th International Conference on Intelligent 

Transportation Systems (ITSC), Macau, China, Oct. 2022. 

[3] Zhouqiao Zhao, Ziran Wang, Kyungtae Han, Rohit Gupta, Prashant Tiwari, 

Guoyuan Wu, and Matthew J Barth, Personalized Car Following for Autonomous 
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[5] Zhouqiao Zhao, Guoyuan Wu, Kanok Boriboonsomsin, and Aravind Kailas, 

Vehicle Dispatching and Scheduling Algorithms for Battery Electric Heavy-Duty 

Truck Fleets Considering En-Route Opportunity Charging, 2021 IEEE 

Conference on Technologies for Sustainability (SusTech), Irvine, CA, Apr. 2021. 
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[7] Zhouqiao Zhao, Guoyuan Wu, Ziran Wang, and Matthew J Barth, Optimal 

Control-Based Eco-Ramp Merging System for Connected and Automated 

Vehicles, 2020 IEEE Intelligent Vehicles Symposium. 

[8] Zhouqiao Zhao, Ziran Wang, Guoyuan Wu, Fei Ye, and Matthew J Barth, The 

State-Of-The-Art of Coordinated Ramp Control with Mixed Traffic Conditions, 

IEEE 22nd International Conference on Intelligent Transportation Systems 

(ITSC), Auckland, New Zealand, Oct. 2019. 

[9] Zhouqiao Zhao, Ziran Wang, Kyungtae Han, Rohit Gupta, Matthew J Barth, and 

Guoyuan Wu, Personalized Adaptive Cruise Control with Inverse Reinforcement 

Learning and Adaptive Model Predictive Control, IEEE Internet of Things 

Journal. (Under review) 

[10] Zhouqiao Zhao, Jiahe Cao, Guoyuan Wu, Matthew J Barth, Yongkang Liu, 

Emrah Akin Sisbot, and Kentaro Oguchi, Development and Implementation of 

Fisheye Camera-Based Infrastructure-Supported Real-Time Cooperative 

Perception System at Intersection, IEEE Transactions on Intelligent 

Transportation Systems, IEEE International Conference on Systems, Man, and 

Cybernetics (SMC), 2023.  (Under review) 

[11] Zhouqiao Zhao, Xishun Liao, Amr Abdelraouf, Kyungtae Han, Rohit Gupta, 

Matthew J. Barth, and Guoyuan Wu, Real-Time Learning of Driving Gap 

Preference for Personalized Adaptive Cruise Control, IEEE International 

Conference on Systems, Man, and Cybernetics (SMC) 2023. (Under review) 

[12] Zhouqiao Zhao, Xishun Liao, Amr Abdelraouf, Kyungtae Han, Rohit Gupta, 

Matthew J. Barth, and Guoyuan Wu, Inverse Reinforcement Learning and 
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Gaussian Process Regression-Based Real-Time Framework for Personalized 

Adaptive Cruise Control, IEEE International Conference on Intelligent 

Transportation Systems ITSC 2023. (Under review) 

7.3 Future Work 

The future work segment of this dissertation sets forth several promising avenues 

for further research. 

Refinement of the driver behavior model is a significant area for improvement. This 

includes effectively incorporating road geometry information into the model to deepen 

understanding of the environment. Further, the interaction of multiple vehicles should be 

assimilated into the model, reflecting more realistic traffic situations. Considerations of 

downstream traffic ought to be included as well, as these provide a comprehensive traffic 

scenario for the model. Of importance is the modeling of both short-term and long-term 

driver behavior to capture immediate reactions as well as the lasting impacts of traffic over 

time on mood. 

A subsequent area of future research would be the integration of this refined driver 

behavior model into the Cooperative Driving Automation (CDA) for optimal system-wide 

operation. This merger holds potential for better predicting traffic flows and more effective 

traffic management. 

Moreover, future research should also consider the utilization of Connected and 

Autonomous Vehicles (CAVs) as actuators within the traffic system, or so-called Vehicle 

as an Actuator (VaaA). This approach aims to regulate and optimize traffic flows through 

the use of CAVs, leading to enhanced road efficiency and safety. Viewing and utilizing 
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CAVs as actuators open up new avenues for manipulating traffic dynamics, which can 

significantly improve the performance of the overall transportation system.
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