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Abstract—Transit buses serve a vital role in sustainable trans-
portation systems, providing mobility to millions of passengers
daily. These buses primarily operate on fixed routes in urban
areas, leading to frequent stops at bus stops and traffic signals,
which contribute to them having low fuel economy. In recent
years, hybrid electric buses and plug-in hybrid electric buses
(PHEBs) have gained significant interest in transit applications.
However, the energy efficiency of early HEBs and PHEBs is lim-
ited as they rely primarily on simple charge sustaining strategies.
This paper presents the design, implementation, and validation
of a Connected Eco-Bus system that utilizes connected and
automated vehicle technology to improve the energy efficiency of
a power-split PHEB. The system co-optimizes the PHEB’s vehicle
dynamics and powertrain controls by leveraging connectivity and
partial automation (Level 1) capability. A case study is conducted
with the Connected Eco-Bus system operating on a typical
urban route where its performance is evaluated through both
microscopic simulation and Dynamometer-in-the-Loop testing.
The results demonstrate that the Connected Eco-Bus system can
achieve energy efficiency improvements of up to 32.4%, which
would thereby contribute to a more sustainable transportation
system.

Index Terms—plug-in hybrid electric bus, connected and au-
tomated vehicle, vehicle dynamics, powertrain controls, partial
automation, Dynamometer-in-the-Loop

I. INTRODUCTION AND MOTIVATION

Public transit has long been recognized as a key component
of urban transportation systems, providing mobility to millions

of people worldwide on a daily basis. Although it is considered
a sustainable transportation mode due to its relatively high
occupancy, there is still much room for improvement in its
operational and energy efficiencies. For example, electrifica-
tion of transit buses has emerged as a promising solution,
with many cities and transit agencies adopting hybrid electric
buses (HEBs) and plug-in hybrid electric buses (PHEBs) in
their fleets. However, the operation of these buses is unlikely
to be optimized for energy efficiency, and simply relies on
heuristic charge sustaining strategies without fully considering
the unique operating characteristics of transit buses and pre-
vailing traffic conditions along the route. Therefore, innovative
approaches are needed to improve the energy efficiency of
electrified transit buses to fully realize their environmental
benefits.

The emergence of connected and automated vehicle (CAV)
technology has opened up opportunities for developing inno-
vative applications that can improve vehicle energy efficiency
[1]. Optimizing vehicle dynamics is the primary approach
among these applications, involving the estimation of down-
stream traffic states using shared information from connected
vehicles and connected infrastructure, and calculation of an
energy-efficient longitudinal trajectory of target vehicles. Eco-
Approach and Departure is a promising example of this
approach for urban scenarios as it enables drivers to receive
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signal phase and timing (SPaT) information in advance to
avoid unnecessary acceleration and deceleration, resulting in
reduced fuel consumption and emissions along signalized
corridors. However, despite the potential benefits of Eco-
Approach and Departure, the development and deployment of
connected eco-driving technology is still in its early stages,
with the focus primarily on vehicle dynamic control. The lack
of consideration for detailed powertrain operation limits the
ability to fully utilize the advantages of a hybrid drivetrain.
Although powertrain-specific eco-driving applications have
been developed in previous studies, vehicle dynamics (VD)
and powertrain (PT) operation are usually optimized separately
[2]. In this paper, we propose a system that co-optimizes both
vehicle dynamics and powertrain operation to further enhance
the system’s performance in terms of energy efficiency. In
addition, current simulation platforms are usually adopted for
single resolution modeling and analyses (e.g., microscopic
traffic simulation, vehicle dynamic simulation, and powertrain
simulation), which may not be adequate to evaluate the sys-
tem’s performance in real-world settings, particularly in urban
areas. To address this limitation, we have devised an advanced
simulation framework that integrates all of these components.
Furthermore, we have established a Dynamometer-in-the-Loop
(DiL) platform to replace the powertrain simulation section,
which enables a more practical and direct assessment of the
system’s efficiency. This approach allows us to evaluate the
eco-operation system’s effectiveness across a broad range of
traffic scenarios, offering insights into the potential energy
efficiency and emission reduction impacts.

In summary, this paper makes the following contributions:

• We have modified a compressed natural gas (CNG) bus
into a PHEB with a parallel hybrid powertrain configura-
tion and developed a comprehensive model of this PHEB
to estimate its energy consumption and performance.

• By leveraging CAV technologies, we have designed an
integrated eco-operation system that co-optimizes vehicle
dynamics and powertrain control. This system takes into
account real-time traffic information and powertrain per-
formance to calculate an energy-efficient dynamic power
split strategy for the PHEB.

• We have evaluated the proposed eco-operation system
through simulation-based and dyno-in-the-loop testing,
demonstrating significant improvements in energy effi-
ciency for the PHEB operating on a typical urban route.

The remainder of this paper is organized as follows:

In Section II, we introduce our efforts to convert a CNG-
powered bus into a PHEB and the comprehensive model
developed for it. Section III describes the method of vehicle
dynamics optimization enabled by CAV technology. Section
IV details the design of a powertrain operation strategy in-
formed by vehicle dynamics, followed by the evaluation and
testing of the proposed system in Section V. Finally, Section
VI presents conclusions and future directions.

II. THE DESIGN AND MODEL OF PHEB

A. PHEB Design, Key Components, and Modeling

In this research, a CNG bus was converted into a PHEB with
a parallel hybrid configuration, as presented in Figure 1. The
PHEB, modified by US Hybrid, employs a Cummins ISB6.7
G 240 CNG engine, yielding 240 horsepower, and peaking
at 300 with electric assist. Its dimensions are: 34,760 lb in
weight, 44 ft 10 in length, 102 in width, and 134 in height,
including CNG tanks.

The powertrain model includes various key components
such as the driver model, chassis, wheel, final drive, trans-
mission, clutch, engine, motor/inverter, battery, electrical ac-
cessories, and starter. The detailed modeling procedure is
explained in a previous study [3], [4]. Both physics-based
and data-driven methods were used to model each component,
and the model was evaluated over eco-driving cycles using
advanced CAV technologies.

B. Component Energy Efficiency Database (CEED)

To comprehend and improve the control strategy of the
PHEB, we conducted a detailed evaluation of each module and
tabulated the performance characteristics into a database [5],
referred to as CEED. The CEED was created by developing
optimal performance tables for the hybrid powertrain, with
multiple power sources. It identifies the range of available
wheel torque for the PHEB at each speed level while also
considering the vehicle weight and road grade. The operating
envelope takes into account the power, torque, and speed
outputs from the engine and motor, both individually and
combined. Based on the PHEB engine, motor/inverter, and
transmission data maps, the CEED was used to: 1) generate
optimal operation for engine-only- and motor-only propulsion
modes, 2) provide optimized powertrain performance effi-
ciency maps as functions of vehicle speed and wheel torque,
and 3) provide the corresponding transmission maps for the
selection of gear ratio. It also developed a set of optimal
operation maps for combined engine and motor operation in
a power split mode (under heavy-load conditions), and for
combined engine and generator operation during periods of
light loads such as idling.

III. VEHICLE DYNAMICS OPTIMIZATION

Figure 2 demonstrates the various vehicle dynamics opti-
mization applications being developed for eco-operation of the
PHEB using CAV technologies. Apart from the Eco-Approach
and Departure (EAD) application at signalized intersections,
the system also includes the Eco-Stop and Launch (ESL) appli-
cation, which calculates the most energy-efficient speed profile
for the bus to approach (with deceleration) and accelerate from
bus stops and stop signs, and the Eco-Cruise (EC) application,
which identifies the most energy-efficient cruising speed for
the bus by considering factors such as the speed limits on the
road, look-ahead traffic and terrain conditions (such as road
grade), and vehicle characteristics.
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Fig. 1. Modified PHEB, parallel pre-transmission configuration schematic, and its forward-looking model, which includes sub-models for (1) driving
environment, (2) driver model, (3) chassis, (4) wheel, (5) final drive, (6) transmission, (7) clutch, (8) engine, (9) motor/inverter, (10) battery, (11) power
converter, (12) electrical accessories, and (13) starter. [2]

Figure 3 outlines the structure of the vehicle dynamics
optimization framework, which consists of three main com-
ponents: the real-time queue prediction module, the graph-
based trajectory planning algorithm (GTPA) module, and the
deep learning-based trajectory planning algorithm (DLTPA)
module. The real-time queue prediction module predicts the
downstream traffic situation based on information shared
among CAVs. The GTPA module formulates the trajectory
planning problem by constructing a graph that encodes the
state space, with trajectory planning represented as a shortest-
path problem. The DLTPA module leverages the knowledge
from the GTPA module, obtained through offline simulation
and training, to ensure real-time performance.

A. Dynamic Queue Prediction Module

To determine the optimal eco-driving strategy at an in-
tersection, it is critical to understand the dynamics of the
downstream queue, specifically the states of the preceding
vehicle. Therefore, we propose an adaptive framework [6] for
predicting queues at different levels of connectivity and with

on-board sensor information. Our approach uses Lighthill-
Whitham-Richards shockwave theory [7] and time headway
measurements, where the discharge rate is calibrated from
historical data at the target intersection.

B. Graph-based Trajectory Planning Algorithm (GTPA) Mod-
ule

We formulate a graph to represent the feasible spatio-
temporal states of the PHEB, which are determined by trans-
lating trajectory and signal data into boundary values for
trajectory planning [8], [9]. The weighted directed graph model
is defined as G = (V,E,C) where V , E, and C represent
the set of nodes, edges, and costs, respectively. As shown
in Figure 3, time and space are discretized into grids with
fixed time steps ∆T and distances ∆X . In the proposed
algorithm, a node is only considered valid if its distance from
the intersection is greater than the sum of the distance of
the preceding vehicle and a safe gap. The graph includes all
possible vehicle states in a discretized vehicle-time-distance
space, with transition costs representing energy consump-
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Fig. 2. Illustration of CAV-enabled vehicle dynamic optimization applications: Eco-Stop and Launch, Eco-Cruise, and Eco-Approach and Departure. [10]

Fig. 3. System Architecture of Deep Learning-based Queue-Aware Eco-
Approach and Departure System. [9]

tion rate. The cost is calculated based on the PHEB model
presented in the previous section. The trajectory planning
algorithm combines traffic/signal boundary conditions from
the information integration module, target states information
from the scenario identification module, and energy costs from
the powertrain module. We then use a graph model to find
the shortest path from the source node, Vs(0, X, vs), to the
destination node, Vd(T, 0, vd), with constraints on target travel
time (T ), target distance (X), initial speed (vs), and target
speed (vd). This allows us to formulate an energy consumption
minimization problem into a path-finding problem. We apply
Dijkstra’s algorithm to solve the single-source shortest path
problem in the graph G, where the computational complexity
is O(log(N)× E).

C. Deep Learning-based Trajectory Planning Algorithm
(DLTPA) Module

The main drawback of the GTPA module is its inefficiency
in computation and inability to handle infeasible states, as
its computation time increases significantly with the planning
horizon. This reduces its effectiveness in adapting to dynamic
environments in complex urban driving scenarios, where the

ego-vehicle needs to adjust its strategies quickly. To address
this issue, we adopt a hybrid approach by combining offline
training and online inference. More specifically, for the offline
process, the GTPA module calculates the optimal solution to
generalized simulation scenarios. Its outputs are used to train
a deep neural network (DNN), called the DLTPA module, in
a supervised learning manner to find the optimal speed for the
next time step based on the current vehicle state and traffic
inputs from the queue prediction model. In other words, the
input features and output target state pairs for the DLTPA
module are derived from the GTPA module during training.
A large dataset can be generated by mapping every possible
dynamic state to its corresponding optimal speed. The DLTPA
module utilizes a fully connected DNN to capture this state
transition mapping. Training and testing sets for the DNN are
randomly selected from this dataset, and cross-validation is
employed to improve hyperparameters and reduce overfitting.

It is noted that the DNN consists of three types of perceptron
layers: an input layer with a feature vector consisting of
the current state of the vehicle, constraints, distance to the
intersection, and target arrival time interval; two hidden layers
utilizing the rectified linear unit (ReLU) activation function for
computational efficiency and reducing the chance of vanishing
gradient; and dropout layers placed after each hidden layer to
prevent overfitting. The output layer comprises a single node
with a linear activation function that determines the optimal
vehicle speed in the next time step. Once the DLTPA module is
well trained offline, it can be used for online implementation
purposes, i.e., to compute the optimal speed trajectory and
interact with other vehicles in a microscopic traffic simulator.
The DLTPA module updates the input features based on the
predicted queue length, allowing the ego-vehicle to quickly
adapt to changes in the dynamic environment. For more details
regarding the algorithm, please refer to [10].

IV. POWERTRAIN OPERATION MODEL AND
CO-OPTIMIZATION

In this section, we present the methods used to deeply
integrate the vehicle dynamics and powertrain control system
of the PHEB. Firstly, we suggest a rule-based approach to
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Fig. 4. SOC control and engine and motor torque demand in all modes. [2]

determine the power split between the motor and engine
while simultaneously ensuring that the State of Charge (SOC)
remains at an optimal level. Following this, we describe an
iterative scheme to co-optimize the final optimal control from
both the VD and PT models.

A. SOC Supervisory Powertrain Model

The SOC supervisory control strategy uses CEED data,
vehicle speed, and tractive torque demand related to in-
stantaneous driving conditions to optimize the motor and
engine operating state and provide maximum overall pow-
ertrain efficiency. The SOC supervisory control is based on
regulating the SOC level to elaborate complex powertrain
operations consisting of charge-sustaining (CS) control and
charge depletion (CD) control. Specifically, the engine and
motor propulsion modes under CS control are regrouped into
discharge-dominant control (DDC) and charge-dominant con-
trol (CDC) operating regimes. Based on the upper and lower
boundaries of SOC management (i.e., SOCub and SOClb),
the supervisory strategy considers three propulsion control
processes: CD, DDC, and CDC. When SOC > SOCub, the
supervisory strategy runs under a CD process. Once the SOC
drops below SOCub, the operation is in charge-sustaining
mode, and the controller switches between the DDC and CDC
processes whenever the specified values of SOCub and SOClb

are reached, ensuring safe and reliable battery operation. For
example, if SOC ≤ SOClb, the control strategy adopts
CDC; once SOC increases above SOCub, the control strategy
switches CDC to CD/DDC as shown in Figure 4.

In addition, the braking mode, with regenerative braking,
occurs at all CDC, DDC, and CD processes once the PHEB
decelerates. Also, the control enables the engine charging

Fig. 5. Co-optimization: integrated vehicle dynamics and powertrain control.

mode at parking stops if SOC ≤ SOCparking,chg: the engine
will run at the operational condition with maximal efficiency.
Meanwhile, a comprehensive approach was developed to filter
and modulate operating states of the engine, motor, and
transmission based on the actual usage to achieve acceptable
vehicle drivability and real-time component operation within
normal functional limits. Therefore, this powertrain control
strategy enables the powertrain efficiency to be optimized in
real time via smart and reliable management of electrical and
mechanical paths as well as SOC, while adopting efficiency-
driven battery charging.
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B. Integrated VD/PT Co-Optimization Strategy

Figure 5 presents the co-optimization flowchart, comprising
three main components in the system [11]. The PHEB model
at the bottom left provides the cost for optimizing the vehicle
dynamics, while the trajectory planning module (e.g., DLTPA)
is located in the top block. The fine-grained powertrain control
module is in the bottom right block. A loop is formed where
the input of each module depends on the output of the previous
module. For example, the vehicle model requires a full speed
profile as the input driving cycle to calculate energy cost per
second based on the instant state. To address this problem, we
propose an alternative approach for deep algorithm integration
by solving the problem iteratively:

1) Based on the key logic of the powertrain control strategy,
a simplified PHEB powertrain model is developed and
put into our vehicle dynamic optimization module as the
edge cost to derive the theoretical optimal speed profile.

2) The powertrain control module takes that speed profile
as the initial driving cycle, fine-tunes it if it is not valid
in engineering practice, and computes the powertrain pa-
rameters and energy consumption for the whole process
under the optimal powertrain strategy.

3) The process can be repeated to find the optimal solution
with high validity and energy efficiency. However, the
number of iterations is mainly determined by the real-
time performance requirement.

V. EVALUATION

A. Simulation-based Evaluation

A range of numerical and simulation tools have been de-
veloped to evaluate intelligent transportation systems (ITS),
each with their own limitations. Microscopic traffic simu-
lators struggle to accurately model vehicle dynamics and
autonomous behaviors, while vehicle simulators struggle to
integrate interactions with other road users and infrastructure.
To address these issues, we utilized PTV VISSIM as a mi-
croscopic traffic simulation tool to model traffic networks,
characterize buses, and develop an External Driver Model
Dynamic Link Library (DLL) for integrated vehicle-powertrain
optimal trajectory planning [12]. VISSIM is a leading-edge
simulator that can model various types of transport, simu-
late wireless communication networks (to some extent), and
calibrate general driver behaviors with real-world data. The
study employs the External Driver Model DLL Interface of
VISSIM to replace the inherent driving behavior model with a
fully user-defined behavior embedded in the vehicle dynamic
control module. During a simulation execution, VISSIM calls
the External Driver Model DLL code for the targeted PHEB in
each simulation time step, which is able to obtain the current
vehicle state, determine its next optimal speed, and then pass
this updated vehicle state back to VISSIM.

The real-world traffic network used in this study is a 3-
mile segment of University Ave. in Riverside, California, a
signalized corridor with 11 signalized intersections and 7 bus

Fig. 6. DiL setup with automatic control. [13]

stops. Based on the real-world signal timing plan at each inter-
section from Riverside City, we code the information into the
signal control module with a consistent SPaT message. Unlike
passenger vehicles or heavy-duty trucks whose trajectories are
only associated with the traffic light and recurrent congestion,
transit buses need to also comply with the specific bus stop
schedule from Riverside Transit Agency (RTA). Therefore, the
arrival time is estimated at each bus stop along the RTA bus
eastbound route based on the specific schedule of two main
stops along the route. Then, the Public Transport module in
VISSIM is calibrated to match the assigned arrival time at
each bus stop. In addition, the bus acceleration/deceleration
profile in the simulation is also calibrated using real-world
data from RTA bus trajectories. The study simulates different
traffic conditions under different system settings and uses
volume/capacity (v/c) ratios to quantify the congestion level
based on the Highway Capacity Manual [13]. The traffic
volume with the real-world traffic count is categorized as the
Light Traffic condition with a v/c ratio of 0.35. The other
three traffic conditions are No Traffic, Moderate Traffic, and
Heavy Traffic conditions with v/c ratios of 0.17, 0.70, and
1.00, respectively. For each simulation scenario, 10 runs are
executed with a simulation duration of 3,600 seconds.

B. DiL-based Evaluation

In order to conduct system evaluations that involve an
actual PHEB and human operator, we utilize an innovative
DiL development and testing platform [14], which enables us
to perform more realistic evaluations. The platform contains
both a physical world and a simulation world, eliminating the
need for a costly dedicated testing track. Additionally, different
roadway networks and traffic scenarios can be created for
modeling and evaluation in the simulation world. The platform
is ideal for environment-oriented emerging technologies, such
as CAV-based eco-driving, as it balances model accuracy
and evaluation scalability. It is considered a cost-effective
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TABLE I
SUMMARY OF EVALUATION RESULTS

Technology Energy Efficiency Improvement Trip Time Penalty Notes

Eco-Approach and Departure 10.5% – 20.9% (simulation) negligible Varies with congestion levels and
CAV MPR9.6% – 22.9% (real-world DiL) negligible

Eco-Stop and Launch 10.9% - 17.1% (simulation) 3s per stop Numerical simulation was used to
evaluate this separately

Eco-Cruise 0% - 12.8% (simulation) negligible Numerical simulation was used to
evaluate this separately

Combined Powertrain
Optimization

13.7% – 18.0% (simulation) negligible Varied with congestion levels and
CAV MPR

8.5% – 10.5% (DiL and projected from simulation) negligible -

Total Integrated (VD & PT) 20.2% – 29.4% (simulation) negligible Varied with congestion levels and
CAV MPR

19.4% – 32.4% (DiL and projected from simulation) negligible -

Fig. 7. PHEB on Heavy-duty Chassis Dynamometer (HDCD) (upper-
left panel); driver’s perspective (upper-right panel); bird’s-eye view of the
road network (lower panel); advisory information on driver-vehicle interface
(middle panel). [13]

approach, which allows for testing on a limited scale to gauge
effectiveness and then being extrapolated to a larger scope.

As shown in Figure 6, the physical world of this DiL
platform contains a chassis dynamometer and a test vehicle
that is equipped with various systems for data acquisition,
monitoring, and control. The test vehicle is connected to the
chassis dynamometer through an Application Programming
Interface (API), and the information from both the test vehicle
and the dynamometer can be transmitted to a microscopic
traffic simulator in the simulation world. In the simulation
world, a virtual version of the test vehicle is created and
synchronized with the real test vehicle in terms of vehicle
dynamics. The simulation engine controls the behavior of other
road users, the operation of traffic signals, and interactions
between road users. The DiL platform is flexible in modeling
and evaluation under different roadway networks and traffic
conditions, and it can also be used to test different market
penetration rates of emerging technologies by modifying the
behavior of other vehicles through APIs. Figure 7 illustrates
the developed mixed-reality environment where the driver’s
perspective, bird’s-eye view of the roadway in the simulation
environment, and the advisory information shown on the
driver-vehicle interface (i.e., on-board display) are presented.

To maintain realistic driving behavior from the driver, the
latency between the driver’s input and simulation response
needs to be minimized.

C. Results

The Connected Eco-Bus was evaluated on a typical bus
route in Riverside, California. The operation of the bus was
evaluated under a number of conditions, including different
levels of traffic (i.e., none, light, moderate, heavy, and very
heavy traffic conditions) and different levels of connected
vehicle penetration (i.e., 0% and 20% penetration rates). The
original plug-in hybrid electric bus platform (with no improve-
ments to the vehicle dynamics and powertrain operation) was
first tested to serve as a baseline for subsequent comparisons.
The evaluation process involved conducting multiple tests
to assess the integrated vehicle dynamics speed trajectory
planning (VD), the efficiency-based powertrain controls (PT),
and combined VD and PT. The tests were conducted both in
simulation and using the DiL methodology, and the results are
shown in Table I.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we developed, implemented, and assessed
a novel vehicle-powertrain eco-operation system to improve
the efficiency of a PHEB, which was converted from a CNG
bus. We conducted a comprehensive analysis of its powertrain
system component-by-component. To determine the optimal
operation ranges for the motor and the engine, we devised
the CEED. We also proposed a CAV-based approach for op-
timizing vehicle dynamics in three applications—EAD, ESL,
and EC—and used a combination of graph-based and deep-
learning-based algorithms to solve for an optimal speed profile
for the PHEB in real-time. To co-optimize the powertrain
operation and the vehicle dynamics, we first introduced a rule-
based SOC supervisory powertrain model and optimized its
parameters based on the CEED. We then utilized an iterative
scheme to identify the most efficient power split to achieve
optimality for both vehicle dynamics and powertrain controls.
To evaluate the vehicle-powertrain eco-operation system, we
first developed an advanced simulation framework that allows
for the simulation of the co-optimized vehicle dynamics and
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powertrain control in the traffic simulation environment of
the VISSIM traffic simulator for simulation-based evaluation.
Moreover, we implemented the system in the actual PHEB,
and developed a dyno-in-the-loop testing platform to further
evaluate the system under more realistic conditions. The results
demonstrate that by using only VD optimization, the energy
efficiency of the PHEB can be improved by up to 18.0%.
However, with the integrated VD and PT optimization, the
vehicle-powertrain eco-operation system can achieve energy
efficiency improvements by up to 32.4%.

Although the proposed model is highly effective in real-time
optimization of vehicle dynamics and powertrain operation,
there is still potential for improvement in: a) the accuracy of
the powertrain model, b) SOC supervisory control strategy,
and c) power split logic. In the future, with the integration of
vehicle-to-everything (V2X) communication, on-board sens-
ing, and artificial intelligence, there will be unprecedented
opportunities for data-driven, customized VD and PT co-
optimization. To mitigate cybersecurity issues and enable
predictive maintenance, control strategies should be enhanced
by detecting abnormal signals. We also plan to conduct road
tests to evaluate the system’s performance in a real-world
environment.
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