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Abstract—1In the foreseeable future, connected and auto-
mated vehicles (CAVs) and human-driven vehicles will share the
road networks together. In such a mixed traffic environment,
CAVs need to understand and predict maneuvers of surround-
ing vehicles for safer and more efficient interactions, especially
when human drivers bring in a wide range of uncertainties. In
this paper, we propose a learning-based lane-change prediction
algorithm that considers the driving behaviors of the target
human driver. To provide accurate maneuver prediction, we
adopt a hierarchical structure that seamlessly seals both the
lane-change decision prediction and the vehicle trajectory pre-
diction together. Specifically, we propose a lane-change decision
prediction method based on a Long-Short Term Memory
(LSTM) network, and a trajectories prediction considering
driver preference and vehicular interactions based on Inverse
Reinforcement Learning (IRL). To validate the performance of
the proposed methodology, a case study of an on-ramp merging
scenario is conducted on a uniquely built human-in-the-loop
simulation platform that can provide an immersive driving
environment, collect data of lane-change behaviors, and test
drivers’ reactions to the prediction results in real time. It is
shown in the simulation results that we can predict the lane-
change decision 3 seconds before the vehicle crosses the line to
another lane, and the Mean Euclidean Distance between the
predicted trajectory and ground truth is 0.39 meters within a
4-second prediction window.

I. INTRODUCTION

The emergence of connected and automated vehicles
(CAVs) over the last decades brings new solutions to address
the safety, mobility, and environmental sustainability issues
of our transportation systems [1]. These CAVs can be driven
under partial or full automation with the help of their on-
board perception sensors, and can also cooperate with other
transportation entities through vehicle-to-everything (V2X)
communications. Although the CAV technology itself has
been evolving rapidly, our transportation systems cannot
achieve full automation/connectivity in the very near future.
In a mixed traffic environment with CAVs and human-driven
vehicles, a CAV actively perceives the surrounding traffic,
predicts human-driven vehicles’ behaviors, makes decisions
regarding the actions to be taken, and executes such actions
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through the planner and controller. Particularly, the predic-
tion of human-driven vehicles’ behaviors is challenging due
to the uncertainties of human drivers.

Although lane change is a fundamental maneuver of our
daily driving, it is also one of the trickiest since it requires the
tacit cooperation of lateral control and longitudinal control
from the driver. Therefore, compared with the prediction
of longitudinal maneuvers such as car-following, which is
heavily correlated with the gap between the ego vehicle and
the leading vehicle [2], the prediction of lane change is much
more complicated and challenging. The online lane-change
prediction of human drivers becomes essential for CAVs,
since it provides inputs to the downstream motion planners
and controllers and hence allows CAVs to better cooperate
with surrounding human-driven vehicles.

Hidden Markov Model (HMM) was widely used to infer
the lane-change intention [3] [4] [5] and usually integrated
with Bayesian network [6] to recognize the lane-change
behavior. As the lane-change intention prediction can be
modeled as a classify problem, some researchers [7] [8]
used Support Vector Machine (SVM) classifier to distinguish
the lane-change maneuver from normal driving state, and
similarly, the multilayer perceptron was used as a discrim-
inator [9] in long-term lane-change prediction. Moreover,
deep learning methods, such as Long Short-Term Memory
(LSTM) model, achieved state-of-art performance on time-
series problems, as in [10] lane-change maneuvers can be
predicted in 3.5 seconds with a precision of 90.5%.

However, the limitation of labeled data insufficiency is
obvious for supervised learning since supervised learning
methods require a large enough labeled dataset to cover each
possible scenario. To label more data for supervised learning,
Mahajan et al. [11] introduced an unsupervised automatic
data labeling method and used the customized labeled dataset
to train an LSTM network for lane-change prediction. Even
if the dataset is well labeled, the data collected by rational
and behave drivers cannot explore all corner cases. Thus,
Inverse Reinforcement Learning (IRL) [12] becomes popular
as it can learn the driver preference, is flexible to unseen
circumstances, and can guarantee the feasibility of the pre-
dicted trajectories [13]. Furthermore, the prediction should
not only consider the vehicle states but also need to consider
the vehicular interaction and the driver preference to further
investigate lane-change trajectories prediction.
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Fig. 1. System workflow of the hierarchical learning-based approach for lane-change prediction with an offline learning phase (in grey) and an online
validation phase (in green).

In [14], the driver preferences over different behaviors with noise (DBSCAN), we develop a unsupervised data
were formulated as a cost function and learned by IRL. labeling method by adding temporal information to
To integrate the interactive behaviors into prediction, Huang relate adjacent data points in a time series.
et al. [15] proposed a sampling-based IRL to learn the « The proposed hierarchical learning-based approach pro-
reward function for building the highway driving behavior vides predictions for lane-change decisions and vehicle
model and predicted the vehicle trajectories by estimating trajectories, along with likelihood estimation.
the probability of the sampled trajectories. This method was e The online lane-change prediction is validated in
validated on a highway lane-change prediction case study. human-in-the-loop simulation using a uniquely built co-
Sun et al. [16] introduced a hierarchical IRL-based algorithm simulation platform.

to predict both discrete decisions and continuous trajectories
of a target vehicle involved in two-vehicle interaction. An
offline evaluation was performed on a mandatory lane- The proposed system for lane-change behavior prediction
change driving scenario. is shown in Fig. 1. The system consists of an offline learning

In this study, we train an LSTM network to provide process and an online validation process. In the offline
binary prediction for the lane-change decisions based on  learning process, based on the dataset collected on a co-
historical vehicle states, and recover the driver’s preference  simulation platform, an LSTM model is trained to predict
(i.e., cost functions) based on IRL. Further, the most probable  the lane-change decision, and the cost function inferring
trajectory and the probability of this binary prediction can  the driver preference is learned by the IRL. In the online
be evaluated, using the IRL recovered cost functions. The  validation process, at each time step, the vehicle states will
proposed algorithm can be used to model the behavior of  be analyzed by the LSTM network to recognize the maneuver
human driven vehicles with connectivity (e.g., by cellphone),  and select a proper cost function. Next, the cost function
and the learned driver models are stored on cloud. Every  evaluates the confidence of possible trajectories provided
time encountering a connected vehicle in the cloud database, by the trajectories generator. Finally, the outputs including
CAVs can identify and obtain its model to facilitate the the most probable trajectory and lane change probability
prediction. are visualized and sent back to the co-simulation platform,

Compared to existing literature on prediction and behavior  and the major results of each phase are highlighted with
modeling, the following contributions are made in this study:  red boundary. The offline process containing most of the

« Based on density-based spatial clustering of applications  algorithms is introduced in Section III, while the online

II. PROBLEM FORMULATION
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validation details are elaborated in Section IV.

This work is an extension of our previous work [17], where
a cloud-based Digital Twin framework was designed for the
storage of driver data and behavior models. Data fusion
technology was implemented to collect historical data via on-
board sensors and V2X communications. In this study, the
target predicted vehicle is assumed to be a connected human-
driven vehicle, whose historical/real-time data and the trained
driver model are accessible through the Digital Twin. When
other connected vehicles detect this target vehicle, they
can download the driver model of the target vehicle to
assist the prediction. Specifically, our prediction algorithm
is designed for the on/off-ramp scenario to predict maneuver
and trajectories of the on-ramp driver, who either performs a
mandatory lane change before the end of the merging area,
or has to keep his/her current lane and enter the off-ramp.

[II. METHODOLOGY

In this study, we propose an algorithm to predict the lane-
change behavior based on the target vehicle’s maneuver and
its surrounding environment. A behavior model of a driver
is built based on the historical trajectories = = {&,},k =
1,..., K, and a trajectory contains vehicle states at every
time step, i.e., & = [s1,S2,...,S¢], where s, is a vector
and denotes the vehicle state at ¢-th time step. The vehicle
states consist of the information of ego vehicle and its
surrounding environment, which can reflect the operation and
the perception of the driver. The future trajectory is denoted
as & = [Si41, ..., Seor], where T is the prediction trajectory
horizon. Since the target vehicle’s lane-change action and
trajectory in future 7' steps depend on its vehicle states
in past steps, we formulate this influence as conditional

—
fu

probability density functions: p (A7 | €) and p (f | f),

respectively, where A = {achange; Qkeep}» i.€., lane change
and lane keep.

A. Unsupervised Data Labeling Based on Modified DB-
SCAN

To predict the lane-change maneuver, we need to rec-
ognize those lane-change moments among the dataset, so
labeling each time step for the dataset is the first step of
data processing. The raw trajectory data is integrated with
the map information to create a dataset that contains features
potentially affecting driver’s lane-change decision making,
and these factors include vehicle speed, position, distance
to surrounding vehicles, speed of surrounding vehicles, de-
viation from the lane centerline, remaining distance to the
mandatory lane-change point (if any), and speed limit.

We separate the trajectories that contain lane-change ma-
neuvers from the whole dataset, by monitoring the accu-
mulated lane deviation. Then those trajectories are further
processed for recognizing the decision of the driver at each
time step. Inspired by [11], we applied DBSCAN to label
lane-change and lane-keep maneuvers for each vehicle state

3
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at each time step. The lateral speed (v;4:) and lateral accel-
eration (a;q¢) are used as two input features for DBSCAN,
and the outputs are two clusters of vehicle states, e.g., lane
change or lane keep.

Algorithm 1 Temporal Filter: denoise the labeled time series based
on the temporal characteristic of lane-changing maneuver.

Input: 1. Labeled time series data T by DBSCAN. 2. A
morphological structuring element (M, ) for the temporal characteristic
of lane changing.

Output: Continuous denoised time series.

-Morphological closing operation-

1: Calculate the dilation (D) of Tby My T, = TH M, =

{z€ E| (M), NT = 0}, where E is a Euclidean space or an integer
orid, M;* ={x € E | —x € M,}. and (M,®), is the translation

of M,* by the vector z, i.e..(M,*), ={b+z | b € M,},Vz EE;

2: Calculate the erosion (©) of Ty by My T, = Ty © M, =

{Z EEIM, < Tl}. where M, _ is the translation of M, by the vector
z

-Morphological opening operation-

3: Calculate the erosion of Ty by M: Ts = To, © M,:

4: Calculate the dilation of T3 by My: Ty = Ta @ My:

However, DBSCAN does not consider temporal relation
among the data points and hence cannot guarantee the
continuity of the lane-change maneuver. To eliminate the
noise of the labeled time series, a morphological operation
[18] is applied to the dataset after DBSCAN clustering, as
described in Algorithm 1. For example, in this study, we
apply M; = [ 1 1 ]1><5’ as we assume the lane-
change maneuver is continuous in a short period and at least
lasts for 0.5 seconds with an update rate of 10 Hz.

B. Lane-Change Decision Prediction Based on LSTM

Before planning the trajectory, the human driver first
considers high-level decisions, e.g., lane change and lane
keep. In order to further analyze the trajectory detail, we first
recognize the driver’s intention. Therefore, in this study, the
lane-change decision prediction is formulated as a time-series
classification problem, which predicts the states in future
time steps into either lane change or lane keep.

As a special recurrent neural network (RNN), LSTM
network can model long-term temporal dependencies among
time series [19], and it has proved its capability on the time-
series prediction [20] [21]. Our goal is to classify future
T steps actions A7 into {dchange ; Qkeep} given historical
vehicle states. Since each vehicle state in the time series
is highly correlated with its neighbors, the sequence-to-
sequence LSTM network is adopted for a multi-step and
multi-variable prediction.

The structure of our network is shown in Fig. 2. The neural
network input is a sequence { = (sl ... si*'™) of
the last T' steps selected vehicle states, including the lateral
deviation from the centerline of the lane (déat), lateral speed
(vla?), longitudinal speed (v°"), and remaining distance
for (mandatory) lane change (d™", if any). The output
is the next 7' steps predicted lane-change action sequence
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(A¢y1, .-, Ayr+1). The network consists of two LSTM
layers (each followed by one dropout layer) and two fully
connected layers (with ReLu and Softmax layer as their
activation layers). The labeled dataset is split into the training
set, validation set, and test set. Since the units of vehicle state
features are different, the whole dataset is normalized to the
range of [0,1].

Decision classification
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Fig. 2. Structure of the proposed neural network for lane-change decision
prediction.

C. Probability Estimation and Trajectory Prediction Based
on IRL

The driver behavior model is usually described by the cost
function, which incorporates the rationality of the human
driver and the theory of mind [14], and rational drivers
behave by optimizing their cost function. Considering the
continuity of the trajectory space, this study adopts Continu-
ous IRL with Locally Optimal Examples [22] [16] to recover
this unknown cost function from expert demonstrations.

1) Continuous IRL: The cost function is a linear com-
bination of a set of features, i.e., C; (6;,&) = 07 f;(£),i =
Ochange > Qkeep» Where 9? is the weights vector emphasizing
the features, and f;(£§) = || fi (s1, S2,...,5¢)|l5. The goal of
the IRL is to figure out the 0] of each driver, maximizing
the likelihood of the driver’s historical trajectories
{&},k=1,..., K, shown in Equation (1):

—_
—
—

0r = argmeaxP(E | ;) (1)
According to the principle of maximum entropy, as shown
in Equation (2), a trajectory with a low cost has a higher
probability, which is proportional to the exponential of its
cost.

Pielo e—Ci(8:,6) e 07 1i(6) 5
where Z(9) = [ e*C"(‘gi’é)df~ is the partition function

integrating all arbitrary trajectories . To handle the com-
putational complexity in solving the partition function, the
continuous IRL [22] [16] approximates the cost of arbitrary
trajectory C; 91-,5 using the second-order Taylor expan-
sion around the demonstrated trajectory &, as in Equation
(3). As a result, the partition function is now a Gaussian
integral and becomes analytically solvable.

roC
23

102 -
8752(5*5)
(3)

Then combining this approximation with equations (1) and
(2), as in Equation (4), the problem can be reformed as

Ci (6:,€) ~ Ci (6, )+ (E =T 52 +(E~9)

4
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minimizing the log-likelihood of —log P (=2 | 6;).

K
2 %g?i (&) Hy," (k) g, (&)
k=1

X .
0; = arg min

i

X “)
— log [Hy, (&)

where g” and H are the gradient and hessian, respectively.
This formula indicates that along the expert demonstration
the recovery cost function should have small gradients and
large positive Hessians.

2) Cost function feature selection: The selected features
present the vehicle state in an interpretable way and can
capture the preference of the driver. We select the following
features to calculate the cost function.

a) Car-following risk: the time headway to the leading
vehicle,

frisk F = 1 —tanh (hev/Hmin) P hev = dheadway/vlon (5)

where H i, is the minimum safe time headway based on the
3-second rule [23], A, is the time headway of ego vehicle to
leading vehicle, and dpeqaway is the distance to the leading
vehicle.

b) Lane-change risk: ego vehicle is projected to its
adjacent lane and calculates the time headway to its potential
leading vehicle and from its following vehicle,

1 — tanh (h.,/Huin) + 1 — tanh (h}v /Hmm)
2

f riskje —

, (6)

where h,, is the project time headway of ego vehicle to

potential leading vehicle, and h/f,u is the time headway from
the potential following vehicle.

c) Lane-change urgency: If ego vehicle needs to per-

form a mandatory lane change, the remaining distance should

be considered.

[1 -+ tanh (B —y)] 1+ tanh (22 td )|

max (furge ) (7)

where the L;qn 1S the width of the lane, X,, is the
longitudinal location of the midpoint of merging area, x and
y are the locations of ego vehicle, and the maz(fyrge) 18
the maximum of fy,qc, for normalizing the feature.

An example surface of this feature is shown in Fig. 3,
which illustrates how this feature varies within a 200m lane-
change area, with a lane width of 4m. As the vehicle comes
closer to the end of the lane-change area without changing
the lane, the urgency increases. But once the lane change is
completed, the urgency will decrease to zero shortly.

d) Mobility: Drivers have different preferences on mo-
bility, and the difference between current speed and the speed
limit (vy;,,,) is used to evaluate this preference.

fmzl_

furge =

e_(ulhn_vlun)z

®)

Authorized licensed use limited to: MIT. Downloaded on August 14,2025 at 19:29:18 UTC from IEEE Xplore. Restrictions apply.



g Center of targetlane it
305 2 it
5 71
of current lane
0
5
Lane deviation(m)
Remaining lane change area(m)
Fig. 3. The urgency for a mandatory lane change.

e) Comfort: The absolute value of the longitudinal
acceleration aj,, and the lateral acceleration a;,; is used
to gauge comfort preference.

fcl = |alon| 7f02 = |alat| (9)

f) Lane deviation: We also include lateral distance into
the cost function to address the imperfection of driving along
the centerline of the lane even in the lane-keep stage.

fa=1ly - Yl (10)
where Y, is the location of the centerline of the lane, y is
the lateral position of the ego vehicle.

Considering the driver’s focus may be different in each
scenario (e.g., a driver may care about the lane-change risk
and the remaining distance when changing the lane, but
not when keeping the lane), we select two groups of fea-
tures: { Jriskys friskier furges fms fd} for lane-change maneu-
vers, and { frisk;+ fm, fe1, fe2, fa} for lane-keep maneuvers,
respectively.

3) Trajectory evaluation: To execute the decision of lane
change or lane keep, planning the trajectory is essential.
Considering the real-time performance, instead of exploring
arbitrary trajectory, we adopt a polynomial trajectory genera-
tor [15] to plan the candidate trajectories ék. As the trajectory
generator block in Fig. 1 presents, at each time step, this
trajectory generator takes the vehicle state {x,y,v,a} as
inputs and generates multiple trajectories within a prediction
window. In this study, we set the time window as 4 seconds.

The cost function C; (6;,&) = 0F f;(€) is used to evaluate
the probability of each possible trajectory &, based on Equa-
tion (11). Considering the interaction and driver preference,
the probability estimation for lane-change decision prediction
(d; = Gkeeps fichange) 1 evaluated by Equation (12), e.g., the
probability of lane change equals the sum of the probability
of all sampled lane-change trajectories.

S 6*Ci(0i*gk)
P (fk | 91) =y (11)
K ~
P(d)=>»_ P (ék | 05‘) (12)
k=1
5
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IV. EXPERIMENTS AND RESULTS

The proposed algorithm is designed on a Unity-SUMO
co-simulation platform, which is built based on a Windows
desktop, and a Logitech G27 Racing Wheel [24]. In this
platform, a real-world traffic network is programmed in
the Unity game engine, spanning from the intersection of
Chicago Avenue to the intersection of Iowa Avenue along
Columbia Avenue in Riverside, California. Traffic flow is
generated by SUMO, and human input is consumed by the
Logitech driving set. This platform allows various drivers
to conduct human-in-the-loop simulations in an immersive
traffic environment, where the driver data is collected, and
the algorithm online validation is performed [25].

In this study, 37 trips with lane changes and 22 trips
without any lane change within the on-ramp/off-ramp area
are collected. The average duration of each trip is 30 seconds,
with an update rate of 10 Hz. This data is processed by
DBSCAN as shown in Fig. 4(a), and an example of labeled
trajectory is shown in Fig. 4(b), indicating that the lane-
change segment is well labeled.

DBSCAN Using Distance Metric

N
T

* Lane changing| |
* Lane keeping

o

N

Lateral acceleration (m/sz)

A

Lateral speed (m/s)

(a) Clustering result

* Lane-changing

Lane-keeping

(b) Data labeling for each time step

Fig. 4. Trajectory labeling based on DBSCAN.

TABLE I
RECOVERED FEATURE VALUES FOR DIFFERENT TYPES OF
DEMONSTRATIONS

friskf frz’sklc fu'rge fm fe1 fe2 fa
Ochange™| 0276 | 0.278 | 0.334 | 0.047| 0.054| - -
Okeep™ 0.081 | - - 0.012| 0.074| 0.599 | 0.235

The recovered cost functions for two types of demonstra-
tions are shown in Table I. For the lane-change behavior,
the risk-related features and lane-change urgency contribute
the most. In the lane-keep scenario, the features of lateral
comfort and lane deviation are more important than other
features.
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As presented in Fig. 1, the online prediction process
combines decision prediction and trajectory prediction. At
each time step, the current vehicle state is sent into the
LSTM network for decision prediction, where look-backward
and prediction windows are both 3 seconds (30-time steps).
The decision prediction result guides the system to the
corresponding cost function which will be used to evaluate
all the trajectory candidates. Based on Equation (11), we
select the most probable trajectory as our prediction, i.e.,

QP (é | 91-*) , and it can be projected into the
simulation’p atform as shown in Fig. 5(a), where the prob-
ability of lane change is also estimated based on Equation
(12).

Fig. 5(b) presents the whole prediction process of the
same trip of Fig. 5(a). Each time step of the ground-truth
trajectory is labeled by LSTM in real time as lane keep (red
dots) or lane change (blue dots). This prediction result shows
that the lane-change decision is recognized in 3 seconds
(30-time steps) before the vehicle crosses the borderline.
Also, the visualized comparison of the 4-second horizon
predicted trajectory (in green dash line) with the ground
truth is shown in the zoom-in subfigure. Fig. 5(c) depicts
the probability estimation of lane change and lane keep
during a trip containing a lane-change maneuver, reflecting
the intention of the driver. In addition, Fig. 6 displays a trip
without any lane-change behavior, and the confidence of the
prediction increases as the vehicle gets closer to the end of
the lane-change area.

To quantify the accuracy of the predicted trajectories,
the Mean Euclidean Distance (MED) [26] is adopted in
this study. At time step ¢, the predicted trajectory & (L)
{zy,,...,7Yy, 1 } is compared with the ground truth & (L)
{xyt,...,xyr+ 1} within the same horizon L and the same
sampling rate, as shown in Equation (13):

&= maxg-

. 1<,
MMED (ftyft) =7 Z |ZYps1 — e,  (13)
=1

where zy; = (x4, yt).

In our online test, the mean MED of 10 trips of the
proposed method achieves 0.39 m with a 4-second prediction
window. This result outperforms the IRL-based prediction
method proposed by Sun et al. [16], which achieves a
mean MED of 0.62 m with a 3 seconds prediction window.
More importantly, we validate our methodology in an online
fashion that allows drivers to test the system in human-in-
the-loop simulations, while most other literature only did this
in an offline fashion by running numerical simulations.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an LSTM-based online
lane-change decision prediction method supported by an
enhanced unsupervised data labeling method. We have also
developed an online lane-change trajectory prediction along
with driver preference recovery considering real-time vehicle
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Fig. 6. Online lane-change prediction of a trip without any lane change
event.

states, vehicular interaction, and driving preference. Finally,
we have performed the online algorithm validation in a
mandatory lane-change scenario created in a human-in-the-
loop simulation platform. The result has been quantified
by the MED between the predicted trajectory and ground
truth, showing an accuracy of 0.39 meters within a 4-second
prediction window.

A major future step of this study is to recruit various
drivers to conduct more comprehensive tests on the human-
in-the-loop co-simulation platform and build a personalized
driving model for each driver based on his or her personal
dataset. This will help deepen the understanding of driver
behaviors and further improve the prediction accuracy.
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