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Abstract�Shared Electric Connected and Automated 

Vehicles have the potential to improve transportation safety, 

mobility, and energy efficiency. A plug-in hybrid electric 

architecture is well suited for developing connected and 

automated vehicle (CAV) applications, allowing for vehicle 

dynamics management and powertrain control. In this paper, we 

developed a data-driven modularized modeling approach for a 

plug-in hybrid electric bus (PHEB), thereby allowing for a wide 

range of connected and automated vehicle applications. Instead 

of using an end-to-end learning approach to model the PHEB, 

our modularized modeling approach considers the physical 

connection of each component of PHEB, which provides various 

signals and dynamics of each subsystem for testing use or 

controller design. The plug-and-play (PnP) feature allows us to 

customize the bus model and update each individual module in a 

flexible manner. The modules include human driver behavior, 

energy management system, internal combustion engine, electric 

motor(s), transmission, and powertrain dynamics. For each 

module, a Long Short-term Memory (LSTM) network is utilized 

to learn each modules� behavior and dynamics using the data 

from extensive dynamometer-in-the-loop (DiL) testing. 

I. INTRODUCTION 

A. Motivation 

Transportation energy consumption and environmental 
impacts have been a long-term concern for decades. To 
address this issue, a wide range of emerging technologies and 
research has been developed from different perspectives. 
There are several examples of this: 1) traffic management 
strategies like ramp control systems [1] can reduce congestion 
and speed fluctuation at the microscopic level; 2) Vehicle 
dynamic optimization strategies like Cooperative Adaptive 
Cruise Control (CACC) [2] and Eco-Approach and Departure 
(EAD) [3] can also be used to plan more efficient trajectories 
for vehicles to follow; and 3) Powertrain optimization 
strategies like intelligent energy management [4] can improve 
the energy utilization ratio. All of these technologies coupled 
with vehicle electrification, connectivity and automation, 
make the vehicle system increasingly eco-friendly while more 
complex. Understanding the vehicle dynamics, including not 
only the speed response but also the detailed operating status, 
can assist researchers to design, test and validate the 
aforementioned strategies. To carry this out, it is essential to 
have an accurate, complete, and flexible model to perform a 
wide variety of intelligent transportation system (ITS) 
applications.  

 

 

 

Benefiting from numerous strategies for energy 

management, hybrid electric vehicles (HEV) have a 

significant advantage in reducing energy consumption and 

emissions. These savings rely on the following reasons: 1) 

when a vehicle is powered by both an electric motor (EM) and 

an internal combustion engine (ICE), a smaller ICE engine 

can be used; 2) both EM and ICE can be designed to operate 

only in their most efficient regions; 3) regenerative braking 

can recapture a significant amount of energy that would have 

otherwise been wasted. A transit bus is a good target for 

hybridization ������ ��� 	
���� ��� �
	������� ��
�� ��� ���� ��������

public transportation system. Specifically, a plug-in hybrid 

electric bus (PHEB) can achieve a 28-48 percent fuel 

economy improvement [5]. However, the modeling and 

controller design of a PHEB is challenging because this type 

of heavy-duty vehicle usually has a low power to mass ratio 

and large actuator delays [6]. In addition, the combination of 

both internal combustion engine (ICE) and electric motor 

(EM) makes the vehicle dynamics even more complicated. 

Further, the different powertrain configurations with different 

mechanical properties, Vehicle Control Unit (VCU)-level 

power, and battery management logic (e.g., parallel hybrid 

and series hybrid) also complicate the modeling process. As a 

result, a physics-based modeling approach does not accurately 

capture the detailed features of individual components or 

processes, such as regenerative braking, engine drive, torque 

converters, and transmission. 

B. Literature Review 

Studies on vehicle modeling have been well established 

over several decades. The physics-based modeling approach 

has been dominating, with simple physical principles to 

represent dynamical changes for vehicle states [7]. Roughly 

speaking, the physics-based model aims to reconstruct the 

relationship between driver�� command and vehicle reaction 

based on vehicle�� tractive force (e.g., engine torque output), 

road resistance (e.g., rolling resistance and aerodynamics 

drag), and inertia (e.g., vehicle mass and shaft moment of 

inertia). However, to describe the necessary transients, a more 

detailed representation of the mechanical properties of the 

vehicle powertrain components is required. McMahon et al. 

[7][8] presented the physics-based model building upon 

engine model, torque converter, and transmission mechanics, 

targeting the longitudinal control of a platoon of automated 

vehicles. Since then, a number of researchers have proposed 

a series of sophisticated or succinct models for different 

control purposes. Based on those methodologies, Rajamani [9] 
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provided comprehensive coverage of vehicle modeling and 

control design. By modeling the detailed vehicle components 

such as anti-lock brake systems (ABS), and semi-active 

suspension, the book introduced the control design for 

multiple purposes, like adaptive cruise control, and automated 

lane-keeping. However, most of the above research only 

modeled the passenger car or general-purpose vehicle. 

According to Lu a��� ���������� �10] research, heavy-duty 

vehicles have their own characters compared to passenger 

cars due to different power to mass ratios and mechanical 

setups. With the vehicle electrification, modeling an electric 

vehicle becomes another hot topic. Among them, Mohd el al. 

[11] proposed a methodical model for electric vehicles on the 

Matlab-Simulink platform to investigate the energy flow and 

efficiency of the EV drivetrain. Mapelli et al. [12] and Liu et 

al. [13] analyzed and modeled plug-in hybrid electrical 

vehicle (PHEV) and power-split hybrid vehicle. Lin et al. [14] 

modeled medium-duty hybrid electric truck using a feed-

forward simulation tool and provided a power management 

control algorithm to mimic the behavior of a dynamic-

programming optimization scheme. Maia et al. [15] used a 

fuzzy logic model approach to capture the regenerative 

braking feature of the electric vehicle while considering the 

�����
��������
������������������as well as road grade as input 

variables. As the vehicle structure becomes increasingly 

complicated, it is difficult for a conventional model approach 

to capture all the details. A data-driven/learning-based 

approach is attractive due to its ability to represent 

nonlinearities. Thompson et al. [16] used a neural network to 

model the emission performance of a heavy-duty diesel 

engine. Albeaik el al. [6] presented an end-to-end learning 

method for the longitudinal dynamics of heavy-duty trucks. 

Further, vehicle model simulation tools, such as ADVISOR 

[17] and Autonomie [18] have been used to develop models 

of different types of vehicles. 

Deep neural networks (DNN) have become increasingly 

popular among the field of transportation modeling due to its 

advantage in fitting complex non-linear dynamics using a 

large amount of data. Ma et al. [19] proposed a large-scale 

traffic speed model by using 2D traffic flow images and a 

convolutional neural network (CNN). The Recurrent neural 

networks (RNN) was developed based on CNN specifically to 

process sequential data. Tan et al. [20] identified the nonlinear 

dynamic model of the throttle body processes in an 

automotive engine using RNN. The LSTM model solved the 

problem of vanishing gradient problem which was often 

found in RNN by using a memory cell that can maintain 

information in memory for long periods of time. Wu et al. [21] 

proposed an LSTM based traffic flow prediction model, 

which made full use of weekly/daily periodicity and spatial-

temporal characteristics to improve the prediction accuracy. 

Albeaik et al. [6] modeled the heavy duty truck using LSTM 

and controlled the longitudinal dynamics using deep 

reinforcement learning. 

C. Contribution of this Paper 

Although there are numerous studies on vehicle dynamics 
and powertrain modeling, very few studies have investigated a 
plug-in hybrid electric bus. In this study, we propose a data-

driven modularized modeling approach for a PHEB using 
extensive testing data from our Dyno-in-the-Loop (DiL) 
platform [22]. Our model and approach are innovative in the 
following aspects: 

� The PHEB model is modularized based on the physical 
structure which can provide accurate prediction of 
detailed system states of different modules. 

� Deep learning with LSTM networks has been adopted to 
depict the extensive dynamics of the PHEB. 

D. Paper Organization 

The remainder of this paper is organized as follows: In 

Section II, we introduce the testbed and the method of data 

collection. Section III explains the system structure and 

modeling methodology. Section IV presents the evaluation of 

the model including both stand-alone performance of each 

module and the cascaded vehicle model, compared with the 

real data. Finally, Section V concludes the paper and discusses 

possible directions for future work. 

II. DATA COLLECTION 

A. Testbed 

In this research program, a compress natural gas (CNG) 

transit bus has been hybridized as shown in Figure 1. This 

vehicle uses a power-split hybrid approach where the internal 

combustion engine (ICE) and the electric motors (EM) are 

coupled so that they are able to power the vehicle either 

individually or together. The power-split logic is programmed 

into the onboard computer (VCU) to select proper torque 

output with a different proportion from both ICE and EM. In 

addition, through such a hybrid system, battery management 

strategies like regenerative braking have been adopted. 

Negative torque can be generated from the EM to charge the 

battery when the driver pushes the brake pedal. 

For the testing, the PHEB is tested on a Mustang heavy-

duty chassis dynamometer (HDCD), which is capable of 

absorbing continuous loads of 600 hp, with vehicle inertia 

simulated in the weight range of 10,000-80,000 lb. The major 

components of our HDCD include rollers, load absorbers 

(e.g., brake), a power supply, and monitoring and control 

systems, in addition to a structural steel frame and auxiliary 

systems (e.g., cooling system).  

Figure 1.   PHEB as tested on heavy-duty chassis dynamometer 
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B. Data Acquisition 

A data acquisition system from Vector Informatik 

(CANCaseXL) is connected with an on-board computer 

installed with Vector CANAlyzer [23] to retrieve J1939 

messages from the in-vehicle network bus (and create desired 

CAN messages if needed). 

To collect the data for training our PHEB model, thirty 

scenarios at different traffic conditions, including no traffic, 

light traffic, moderate traffic, heavy traffic, and very heavy 

traffic, are tested. For each test, the speed profile and 

instantaneous speed are delivered to the driver through a 

driver-vehicle interface (DVI) mounted on the vehicle 

dashboard. Through the acceleration pedal and brake pedal, 

the longitudinal control is handled by the driver. Lateral 

controls are not considered in this study. We select sixteen 

signals out of the whole set of J1939 messages to build our 

model. In Table I, the signal and their abbreviations are listed. 

In addition to the signals in the J1939 message, the 

suggested speed profile (shown on DVI) is also available for 

modeling. The overall system takes the suggested speed as 

input. Combined with initial states, the system updates all the 

relevant vehicle states (e.g., SOC and actual speed) for the next 

time step. Then the vehicle sends actual speed feedback to the 

beginning of the model (i.e., human driver module), forming a 

closed loop. To evaluate the model���	�����
�������he dataset 

is divided into two portions: one for training, and the other for 

validation. 

TABLE I.  SIGNAL SELECTED FROM J1939 MESSAGE 

Name Abbreviation (unit) 

Vehicle Actual Speed Veh_Spd (mph) 

Acceleration Pedal Position Acc_Pdl (pct) 

Brake Pedal Position Brk_Pdl (pct) 

Battery State of Charge SOC (pct) 

Electric Motor Torque Command EM_Trq_Cmd (Nm) 

Electric Motor #1 Speed EM1_Spd (rpm) 

Electric Motor #2 Speed EM2_Spd (rpm) 

Electric Motor #1 Torque EM1_Trq (Nm) 

Electric Motor #2 Torque EM2_Trq (Nm) 

Engine Command Percent Torque 
ICE_Trq_Cmd_Pct 

(pct) 

Actual Engine Percent Torque 
ICE_Trq_Act_Pct 

(pct) 

Engine Speed ICE_Spd (rpm) 

Engine Throttle Valve Position 
ICE_Thrtl_Val_Pos 

(pct) 

Engine Fuel Rate ICE_FR (lph) 

Transmission Actual Gear Ratio Trns_GR_Act 

Transmission Selected Gear Level Trns_GLvl_Sel 

III. DATA-DRIVEN MODULARIZED PHEB MODELING 

In this section, we introduce the methodology of the 
proposed data-driven modularized modeling approach for our 
PHEB.  

A. System Structure 

Figure 2 illustrates the system structure of our modularized 

PHEB model. All the modules modeled in this study are 

shown in the dashed boxes. The Human Driver module 

considers the interaction between the driver and DVI. Based 

on the suggested speed and current vehicle actual speed, the 

driver responds by pushing the acceleration pedal or the brake 

pedal. Then based on current vehicle status and the positions 

of two pedals, VCU calculates the power split logic and sends 

it to ICE and EM. A clutch is used to govern the transition 

between different modes (e.g., ICE-only, electric-only, and 

hybrid). For example, in the electric-only mode, the clutch is 

released; in the ICE-only mode, the clutch is engaged, and the 

EM provides zero torque output; in the hybrid mode, the 

clutch is engaged, and both ICE and EM respond to their 

command torques accordingly. Because of physical 

constraints and some low-level controller logic (e.g., idle-

speed controller), the actual response varies from the torque 

command. Therefore, the ICE module and the EM module 

depict the torque response based on torque command and 

vehicle status. Next, battery dynamics can be updated 

according to the usage or charging mode of the EM. 

Afterwards, the transmission module reconstructs the 

automatic transmission shift schedule. With all the above 

vehicle status predicted, the powertrain dynamic module 

mimics the key states including vehicle actual speed, ICE 

speed, and EM speed. Finally, the predicted actual speed is 

sent back to the human driver module for the next iteration. 

To conclude, the input/output signals of each module refer to 

Table II. Although there are two separate electric motors, both 

of them are linked together and respond to the command in 

the same manner. Therefore, they are modeled as a whole. 

B. LSTM Network for each Module 

Given the nonlinearity nature of modeling PHEB 
dynamics, the LSTM neural network is chosen to be the 
training algorithm because of its significant ability of fitting 
complex dynamics with a large amount of sequential data. The 
complexity of the neural network has an impact on model 
accuracy. In general, the higher the complexity, the easier it is 
to fit the training data, but it is more likely to overfit and reduce 
the model generalizability.

 

Figure 2. System Struction, modules modeled are shown in dashed boxes 
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TABLE II.  INPUT/OUTPUT SIGNALS, NETWORK STRUCTURE, AND STAND-ALONE PERFORMANCE OF EACH MODULE IN THE SYSTEM 

 

At time step t, each module in the system receives the input 

from the current time step, hidden and cell states from previous 

time step t-1, initial state of the output, and predicts the output 

at the next time step t+1, which can be described as the 

mapping below: 

��� � �� � 	�
���� ��� 
 ��� ��� 
 ��� ��� 

where x and y are the input/output vectors that vary according 

to different modules, c and h are the cell state and hidden state, 

respectively, produced by the LSTM layers to store the 

memory from previous time steps, y0 is the initial state of the 

output, and f represents the mapping function.  

The neural network consists of LSTM layers, fully 

connected layers (FC), dropout layers, and nonlinear activation 

layers.  A dropout layer is adopted with dropout ratio of 0.2 

after each LSTM layer to prevent over-fitting. Rectified linear 

(ReLU) unit is chosen to be the nonlinear activation layer for 

the network. The detailed structure shows in Table II. 

For each module, we train a network for every category of 

output. LSTM(n) represents the number of hidden units in the 

LSTM layer and FC(n) represents the output size of the fully 

connected layer. The structure for each module is described in 

the Table II. 

For the Transmission module, since there is a one to one 

correspondence between Transmission Actual Gear Ratio and 

Transmission Selected Gear Level, Trns_GLvl_Sel is selected 

to be the network output in training. Because the transmission 

gear level has only six possible values, a classification layer is 

used as the last layer instead of a regression layer.  

The network is implemented using MATLAB. The training 

process takes 1000 iterations with a preset early stop criterion 

to avoid over-fitting. The trainable parameters are updated 

using an adaptive moment estimation (Adam) optimizer with 

an initial learning rate 5×10-3. All the model training, 

validation, and testing are performed on a PC with six-core 

3.70 GHz CPU, 32 GB of RAM, and Nvidia GeForce GTX 

1080 TI GPU.

 

 

Module Input Output Structure MAE/Accuracy NMAE 

Human Driver Ref_Speed Acc_Pdl LSTM(300) × 2 

FC(300) × 2 

FC(1) 

7.829 0.0752 

Veh_Spd Brk_Pdl 2.899 0.0445 

VCU Veh_Spd EM_Trq_Cmd LSTM(200) × 2 
FC(200) × 3 

FC(1) 

47.299 0.0217 

SOC 

Acc_Pdl 

Brk_Pdl ICE_Trq_Cmd_Pct 1.058 0.0106 

Trns_GR_Act 

ICE_Thrtl_Val_Pos 

EM EM_Trq_Cmd EM1_Trq LSTM(200) × 2 
FC(200) × 3 

FC(1) 

 

8.182 0.0092 

EM2_Trq 7.997 

 

0.0090 

ICE ICE_Trq_Cmd_Pct ICE_Trq_Act_Pct LSTM(400) × 2 
FC(400) × 3 

FC(1) 

4.134 0.0413 

Acc_Pdl ICE_Thrtl_Val_Pos 4.024 0.0613 

Brk_Pdl ICE_FR 1.311 0.0249 

ICE_Spd 

Battery EM1_Spd SOC LSTM(400) × 2 

FC(400) × 2 
FC(1) 

1.548 0.0356 

EM2_Spd 

EM1_Trq 

EM2_Trq 

Initial_State_1 

Transmission EM1_Spd Trns_GR_Act LSTM(300) 

LSTM(200) 
FC(200) 

FC(100) 

FC(6) 

90.34% -- 

EM2_Spd 

EM1_Trq 

EM2_Trq 

ICE_Trq_Act_Pct 

Acc_Pdl 

Powertrain 

Dynamics 

EM1_Trq Veh_Spd LSTM(400) × 2 

FC(400) × 3 
FC(1) 

0.731 0.0151 

EM2_Trq 

ICE_Trq_Act_Pct 
EM1_Spd 

78.711 0.0450 

Acc_Pdl 

Brk_Pdl 
EM2_Spd 

78.684 0.0449 

Trns_GR_Act 

Initial_States_2 ICE_Spd 67.317 0.0382 
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IV. PHEB MODEL EVALUATION 

A. Stand-alone Module Evaluation 

Each module is trained and tested separately using the data 

collected from the PHEB. The collected data is resampled to 

10 Hz and grouped into sequential series of 500 time steps 

each. The full dataset is split into training, validation, and 

testing separately. To evaluate the performance of the 

proposed system, mean absolute error (MAE) and normalized 

MAE (NMAE) are calculated for all modules except the 

transmission where the accuracy of the transmission gear level 

was used as the performance index. The stand-alone testing 

results are summarized in Table II. The MAE and NMAE are 

defined as below: 

��� � �
� ��� 
 ����

�
���

�
 

���� � �
� ��� 
 ����

�
���

� � ��� ��� 
 �!"�����
 

where � is the ground truth value and �� is the predicted value. 

The NMAE normalizes the error to be between 0 and 1. As can 

be seen from the table, all the NMAE values are smaller than 

0.1, and the prediction accuracy of the transmission selected 

gear level reaches over 90%, indicating the excellent 

performance of all modules in the system.  

B. Cascaded Vehicle Model Evaluation 

1) Simulation setup: The experiments showed in this 

subsection are conducted through our DiL testbed and Matlab 

Simulink is used to evaluate the effectiveness of the proposed 

model. First, a random trajectory is selected as the suggested 

speed profile for both the driver and the proposed model. 

Next, using the DiL platform, the driver tries to follow this 

speed profile as accurate as possible. The criteria for the driver 

in this test are the same as the one when collecting the training 

dataset, which is to follow the provided speed profile as close 

as possible. The speed response and other aforementioned 

data are collected to be the ground truth. The cascaded vehicle 

model is built at the Simulink platform. Each module 

corresponds to a block in Simulink, and the blocks are 

connected based on their input-output relationships. Only the 

suggested speed profile and the necessary initial state are 

required for the simulation. 

2) Simulation results: This section presents and analyzes the 

simulation results for the proposed model. The simulation 

results are shown in Figure 3. All the results in the same 

module are shown in the red dashed boxes. The blue curves 

show the ground truth, while the red curves show the 

predicted value from the proposed model. In general, the 

cascaded vehicle model successfully predicts signals with the 

correct trend and acceptable approximate value. Among them, 

the negative torque provided by EM presents a good example 

of regenerative braking. The ICE outputs (ICE_Act_Trq, 

ICE_FR, and ICE_Thrtl_Val_Pos) converging from low 

value to a higher one depicts the idle-speed control and torque 

convert precisely. However, the prediction from the Human 

Driver module at the very first 20 seconds is inaccurate. As 

the upstream module of the cascaded system, it influences the 

prediction of those downstream ones. An upshift-downshift 

maneuver is predicted inaccurately by the transmission 

module, and the powertrain dynamics module miscalculates 

the zero speed. 

V. CONCLUSIONS AND FUTURE WORK 

Conventionally, modeling vehicles is based on the 

understanding of the physical attribution of the vehicle. 

Numerous of ODE is used to depict the vehicle dynamics. 

However, due to the heavy-duty �����
��� slow dynamics, the 

nonlinearity is usually hard to be captured accurately. Also, 

as the vehicle structure becomes increasingly complicated, 

part of the vehicle dynamics evolving preprogrammed 

automatic control logics (e.g. automatic transmission 

scheduling and intelligent power management strategies for 

HEV) are difficult to be considered without prior data. To 

address this, numerous researchers have turned to learning-

based modeling approaches. Although offering relatively 

good performance in modeling the vehicle speed response, 

Figure 3.   Simulation Results for Stand-alone Modules 
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most of the end-to-end learning-based models lose too much 

detailed information that is essential for designing and 

validation of powertrain control and power and battery 

management strategies planning. In general, only few 

research has been done on modeling PHEB. 

In this paper, we proposed a data-driven modularized 

model for PHEB using the deep learning approach with 

LSTM networks. We design the modular structure according 

to the physical architecture of the vehicle platform and the 

LSTM networks based on the properties of each module. The 

performance validation of the stand-alone modules shows 

great accuracy in modeling the vehicle subsystems. The 

cascaded vehicle model is able to predict numerous signals 

and depicts the vehicle dynamics with the correct trend and 

approximate value. The results show that given the initial 

states, without update any ground truth information, the error 

of the model does not grow alone time. Moreover, the 

availability of the key signals such as SOC, engine fuel rate, 

and transmission shift schedule provide potent support for 

testing use or controller design.  

Although the presented model is accurate, there is still 

room for improvement. As the property of the cascaded 

system, the inaccurate signal transmitting along modules may 

magnify the error. For example, the insufficient predicted 

acceleration pedal position may lead to insufficient torque 

from both ICE and EM and also cause the gear-level 

prediction error. As a result, the speed estimation would be 

relatively small compared with the ground truth. Therefore, 

fine-tuning of the networks to emphasize the performance of 

certain key signals could further improve the accuracy. 

Besides, taking advantage of the presented model, an 

ongoing research direction is to develop a reinforcement 

learning-based eco-friendly control algorithm that can 

optimally split the power of ICE and EM to track giving 

trajectories. 
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