
Personalized Car Following for Autonomous Driving with Inverse
Reinforcement Learning

Zhouqiao Zhao∗†, Ziran Wang∗, Kyungtae Han∗, Rohit Gupta∗, Prashant Tiwari∗,
Guoyuan Wu†, and Matthew J. Barth†

Abstract— Driving automation is gradually replacing human
driving maneuvers in different applications such as adaptive
cruise control and lane keeping. However, contemporary driving
automation applications based on expert systems or prede-
fined control strategies are not in line with individual human
driver’s preference. To overcome this problem, we propose a
Personalized Adaptive Cruise Control (P-ACC) system that can
learn the driver’s car-following preferences from historical data
using model-based maximum entropy Inverse Reinforcement
Learning (IRL). Once activated in real-time, the P-ACC system
first classifies the driver type and the weather type (at that
moment). The vehicle is then controlled using the pre-trained
IRL model on the cloud of the associated class. The personalized
IRL model on the cloud will be updated as more human
driving data is collected from various scenarios. Numerical
simulation with real-world naturalistic driving data shows that,
the accuracy of reproducing the real-world driving profile
improves up to 30.1% in terms of speed and 36.5% in terms
of distance gap, when P-ACC is compared with the Intelligent
Driver Model (IDM). Game engine-based human-in-the-loop
simulation demonstrates that, the takeover frequency of the
driver during the usage of P-ACC decreases up to 93.4%,
compared with that during the usage of IDM-based ACC.

I. INTRODUCTION

Expert systems are commonly used to build classic driving
automation. An Adaptive Cruise Control (ACC) system, for
example, allows the ego vehicle to travel at a set speed
and/or maintain a desirable constant time headway with
its preceding vehicle based on the measurements from its
ranging sensors (e.g., radar) and its own states. Currently,
ACC is one of the most commonly used Advanced Driver-
Assistance Systems (ADAS), which has gained its market
penetration rate over the last decade [1]–[3].

However, the settings of existing ACC systems are limited
with only a few options to choose from (e.g., long, medium,
and short), which do not consider individual customer’s driv-
ing style and sometimes turn out to be excessively aggres-
sive/conservative for different drivers. When environmental
factors such as weather conditions are taken into account,
the same driver’s car-following preference may also vary.
Therefore, the predetermined rule-based system is not able

Corresponding author: Zhouqiao Zhao, zzhao084@ucr.edu
∗InfoTech Labs, Toyota Motor North America R&D, Mountain View,

CA 94043.
†Department of Electrical and Computer Engineering, and the Center

for Environmental Research and Technology, University of California,
Riverside, CA 92507.

to accommodate diverse driving styles, and the driver may
eventually disregard the ACC system due its unsatisfactory
user experience. Adding personalized features to the ACC
system can have a significant impact on user’s acceptance
and trust in the system.

Physics-based control policies are one of the most preva-
lent longitudinal control methods, where the most common
ones are using an Ordinary Differential Equation (ODE) to
model car following. The ODE equation tries to explicitly
depict the driver’s interaction with the preceding vehicle
considering the dynamics of the vehicle. Based on the given
distance gap, speed of the ego vehicle, and the speed of
the preceding vehicle, the acceleration of the ego vehicle
can be calculated from the ODE to enable the car-following
behavior. The most widely used models include IDM [4],
Gipps model [5], and Newell’s car-following model [6].

Another physics-based controller that models the dynam-
ics of the car-following system in the state space, and the
acceleration of the ego vehicle is the Model Predictive
Controller (MPC), which optimizes the predefined objectives
such as safety, comfort and fuel economy requirements [7],
[8]. However, both the ODE and the objective function for
MPC require prior knowledge of the system, and they are
difficult to capture personalized behaviors.

The learning-based methods, on the other hand, model
the car-following behaviors directly from the demonstration
trajectories, so they can better learn the personalized driving
styles. In general, the learning-based method can be classified
into two categories. The first one is Imitation Learning,
where the models clone the behavior of the demonstrations
by learning the mapping from states to actions. For example,
Deep Neural Network (DNN) and Gaussian Mixture Model
(GMM) have been used to model car-following behaviors
like [9], [10]. Also, because the decision-making process
may depend on the sequential state inputs, the networks with
memory, such as Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) have been used [11], [12].
However, as the demonstration trajectory is not able to visit
all possible states, extrapolation is needed at the inference
stage. As a result, the system’s performance and even safety
cannot be guaranteed. Toward this end, a safety filter has to
be implemented as discussed in [13].

The second category of the learning-based method is
Apprenticeship Learning, where the models first learn the

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 2891

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
78

-1
-7

28
1-

96
81

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
46

63
9.

20
22

.9
81

24
46

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:33:19 UTC from IEEE Xplore. Restrictions apply.

reward/objective of the demonstrations using IRL [14]–[16]
or Inverse Optimal Control (IOC) [17], and then Reinforce-
ment Learning (RL), MPC, or other controllers can be imple-
mented based on the recovered reward/objective. Instead of
copying the movement directly, the apprenticeship learning
method infers the preference of the agent before making
decisions. Therefore, better performance for unseen scenarios
is expected. Also, because the design of the controller is
decoupled with the modeling part, both the stability and
safety can be proved mathematically based on the selection
of the controller.

In this work, we propose a Personalized Adaptive Cruise
Control (P-ACC) system to learn from the realistic car-
following behaviors of individual drivers. The proposed
methodology is based on Inverse Reinforcement Learning
(IRL) [15], which infers the reward function of a target
agent given the demonstration trajectories. Instead of directly
mimicking the behavior of the demonstrations, the recovered
reward function can help explain not only the observed
demonstrations, but also the representation of the preference
of the agent doing the specific task. Therefore, the reward is
an ideal representation of the personalized driving style of
each driver for the proposed P-ACC system.

Compared to the existing literature that studied the per-
sonalization of ACC systems, we make the following con-
tributions in this work:
• The driving preferences of a driver is modeled by the

proposed IRL algorithm after classifying the data by its
driver type and weather type.

• The maximum cumulative reward criterion is used for
choosing the most suitable pre-trained models for new
drivers, which enables the real-time implementation of
the proposed system.

• The real-world naturalistic driving data is collected by
a test vehicle and then used for training and validation.

• The comfort and trust levels of drivers on the P-ACC
system are quantitatively measured by the takeover
frequency while testing the system on the human-in-
the-loop simulator.

II. PROBLEM FORMULATION

A. System Architecture

The architecture of the proposed P-ACC system is shown
in Fig. 1. Different from our priory study that considers only
the driving trajectories [18], in this study, we also utilize
driver types and weather types as inputs of the system. A
cloud framework built by our previous work [19], namely
“Digital Twin”, is used to train and store the personalized
models.

The offline training process (i.e., P-ACC off) is depicted
by the blue pipeline in Fig. 1. The raw trajectories are first
classified into different subcategories based on the driver type
and weather type, where the details are introduced in section
III-A. Then, the trajectories are used to train the associated

Fig. 1. System architecture of the proposed personalized adaptive cruise
control (P-ACC) system.

IRL models, which are stored as a two-dimensional table on
the “Digital Twin”.

The online inference process (i.e., P-ACC on) is depicted
by the green pipeline in Fig. 1. The system first samples
a short manually driving trajectory and sends it along with
the current weather condition to the cloud server. Similar
to the offline training process, the information goes through
the driver classification module and weather classification
module to determine which subcategories this driver belongs
to. Then, the corresponding IRL model is sent back to the
vehicle to instruct the local controller.

B. Car-Following Dynamics

In this work, we assume the system is governed by the
second-order dynamics:

x =

 p
v
g

 (1)

ẋ =

 ṗ
v̇
ġ

 =

 v
a

vf − v


= A

 p
v
g

+B · a+ C · vf

(2)

where p and v are the position and speed of the ego vehicle,
respectively; g is the distance gap between the ego vehicle
and the preceding vehicle; a is the acceleration of the ego
vehicle; and vf is the speed of the preceding vehicle.

2892

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:33:19 UTC from IEEE Xplore. Restrictions apply.

In addition, the car-following behavior can be described
as a Markov-Decision Process (MDP), which is defined as a
tuple {S,A, T, r, γ}. S is the state space spanned by v and
g; A is the action space spanned by a. T is the transition
probability matrix; r is the reward function that can represent
the driver’s personalized driving style when performing the
car-following task; γ is the discount rate representing the
degree of emphasis that the driver has on the previous
reward; To define the transition matrix T , we discretize the
car following kinematics as follows:

v(t+ 1) = v(t) + a(t) ·∆t+ σv (3)

g(t+1) = g(t)+[vf (t)− v(t)] ·∆t+ 1

2
·a(t) ·∆t2+σg (4)

Because the driver may not be able to observe the states or
perform actions perfectly, the Gaussian noises, σv and σg ,
are added to both the transition of v and g. It should also be
noted that the speed of the preceding vehicle, vf , is not part
of the MDP, but can be obtained while driving.

C. Assumptions and Specifications

We define the discrete 2D state space based on the range
of v and g for the car-following task. v ranges from 0 to
36m/s with the interval of 0.5m/s, while g ranges from 0 to
120m with the interval of 0.5m.

Also, we presume that the human driver is rational and that
his or her actions are near-optimal in terms of the cumulative
reward function defined as follows:

v(ξ) =

N∑
t=0

γt · rt(s) =

N∑
t=0

γt ·αT ·Φ(s) (5)

where ξ is the car-following trajectory, and N is the time
horizon. As shown in Equation (5), we assume that the
instantaneous reward r can be expressed in the span of the
reward basis Φ, whose dimension equals to the number of
features, and α is a vector denoting the weight of each
reward basis.

As recommended by [16], we use a Gaussian-like kernel
function to be the reward basis to improve the nonlinear
representation ability. For each state s, its relationship with
any n state, si, in the state space is mapped using the kernel
function as follows:

Φ(s) =


Φ1(s)
Φ2(s)
. . .

Φn(s)

 =


K (s, s1)
K (s, s2)
. . .

K (s, sn)

 (6)

K (s, si) = exp

(
−|s− si|

2

σ2

)
(7)

|s− si|2 = (v − vi)2 + (g − gi)2 (8)

It should be noted that the value of σ is selected manually
based on the resolution of the state space to obtain a balance
between underfitting and overfitting.

III. METHODOLOGY

In this section, we introduce the proposed system in detail
for both modeling the driver’s preference and controller that
will be used to follow the preceding vehicle. We first discuss
the data clustering in the perspective of environmental factors
and driver’s type in Section III-A. Then, we describe the spe-
cific training and validation procedures of IRL in Section III-
B. Next, the method of personalized desired gap calculation
is discussed in Section III-C. Finally, Section III-D elaborates
the controller designed to calculate the acceleration for the
ego vehicle based on the personalized desired gap table.

A. Data Clustering

For large scale implementation of the proposed system,
training and storing the personalized models for all drivers
individually is not time-efficient or storage-efficient. Also,
it would become extremely difficult to select suitable pre-
trained models for the new driver or the driver in the
new scenarios. On the other hand, the preference of the
similar drivers is relatively close. This similarity can be
easily defined using the unsupervised clustering algorithm.
As distinct environmental circumstances such as weather
conditions change, different drivers can have different driving
styles. In other words, driving in different weather conditions
can be regarded as different tasks for the same driver.

Therefore, we propose to use Algorithm 1 to classify
the data before training. The aim of this procedure is to
assign driver type and weather type to the demonstration
trajectories. Also, the classification boundary is learnt for on-
line inference. For each trajectory, the weather condition can
be acquired from the OpenWeatherMap API [20] given the
initial time and position. Then, we select the car-following
related features, i.e., average speed and average time gap, to
classify the drivers. If the instant speed of a trajectory is less
than the threshold τ , the calculation of the time gap will be
unreliable. Therefore, we discard those data points as shown
in line 6 to line 11. The extracted feature for driver and
weather type classification is packed in line 17 and 18. Using
the K-mean algorithm with predefined number of classes, the
label of each trajectory can be assigned. Finally, we apply
Support Vector Machine (SVM) to learn the classification
boundary.

B. Car-Following Preference Modeling Using IRL

According to the maximum entropy IRL (Max-Ent IRL)
proposed by Ziebart [15], the probability of a trajectory is
proportional to the sum of the exponential rewards accumu-
lated along the trajectory as described in Equation (9).

p(ξ | α) =
1

Z(α)
exp

(∑
t

Rα (st)

)

=
1

Z(α)
exp

(∑
t

αTΦ (st)

) (9)

2893

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:33:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Data classification based on driver types
and weather types

Data: Demonstration trajectories: ξ = {ξ1, ξ2, ..., ξn},
Number of driver types: p, Number of weather
types: q

Result: Classification boundary: CB, Classification result:
CR = {[DTi,WTi], ...}n, Driver type: DTi,
Weather type: WTi

1 DT features = [], WT features = []
2 for ξi in ξ do
3 [rain, snow, cloud, visibility,

time of day]=OpenWeatherMap(ξi[0].time,
ξi[0].latitude, ξi[0].longitude)

4 for time in ξi.total time do
5 time gap mean, speed mean = 0
6 if ξi[time].speed < τ then
7 ξi.total time −= 1
8 continue
9 else

10 time gap = ξi[time].gap/ξi[time].speed
11 end
12 time gap mean += time gap
13 speed mean += ξi[time].speed
14 end
15 time gap mean /= ξi.total time
16 speed mean /= ξi.total time
17 DT features.push([time gap mean, speed mean])
18 WT features.push([rain, snow, cloud, visibility,

time of day])
19 end
20 CR=[k mean(DT features, p), k mean(WT features, q)]
21 CB=SVM (CR)

Fig. 2. Flowchart for the maximum entropy IRL (Max-Ent IRL) used in
the car-following preference modeling.
https://www.overleaf.com/project/610dca5b0f3d25285677a8dc

where Z(α), called partition function, equals to∑
ξ exp (

∑
tRα(t)). To recover the reward function,

the maximum log likelihood method is used at the
demonstration trajectories with respect to the weight of the
reward function.

L(α | ξ) = max
α

∑
ξ

log p(ξ | α) (10)

Then, the gradient of the weight α can be written in the
following form:

∇αL =
∑
ξ

p(ξ)
∑
s∈ξ

Φ(s)−
∑
ξ

Ds

∑
s∈ξ

Φ(s) (11)

The first term,
∑
ξ p(ξ)

∑
s∈ξΦ(s) = f̃ , is named expected

feature count. The second term,
∑
ξ Ds

∑
s∈ξΦ(s) = f̄ , is

named empirical feature count, and Ds is the state visitation
frequency.

The training process is illustrated in Fig. 2. To calculate
the expected feature count, f̃ , before the training iterations,
we first estimate p(ξ) by calculating the state visitation
frequency of the demonstration trajectories. Then, at the first
iteration, the reward weight, α, is generated randomly. Next,
we apply the value iteration algorithm from [21] to recover
the value function v(s) and the optimal policy π∗(s, a) under
the current reward function. The state visitation frequency,
Ds, can be calculated by exhaustively traversing the state
space with a predefined time horizon given transition proba-
bilities, initial state distribution, and the optimal policy under
current reward function [15]. However, this takes extremely
long time when the state space is large and/or the time
horizon is long. Therefore, in this research, we estimate
Ds using the Monte Carlo method, where a number of
trajectories are generated randomly governed by the optimal
policy of the current iteration. The initial state and the
time horizon of each trajectory should randomly match the
demonstration trajectories.

C. From Reward to Control Strategy

Based on the recovered reward function from the Max-Ent
IRL algorithm, the driver’s desired gap at each speed can be
calculated using Equation (12)

gdesired (v) = arg max
g

r(v) (12)

Then, the gdesired-speed table is sent to the vehicle speed
controller so that the vehicle can track the desired gap as
preferred by the driver. In this work, we implement a PID
controller to calculate the suggested acceleration for the
vehicle in simulation.

D. Online Inference

Because the training process of IRL is computationally
intensive, it cannot enable real-time implementation. The
pre-trained models are saved in the cloud, and the cor-
responding IRL model can be downloaded and applied
whenever the driving type has been determined. When a
new driver drives in a new scenario for the first time, a
sample trajectory data is gathered and uploaded to the cloud.
Then the subcategories of models are first selected based on
the considered environmental factors. After traversing each
selected model and calculating the cumulative reward for the
sample trajectory using Equation (5), the one with the highest
cumulative reward is chosen as the most appropriate model
for usage.

IV. EXPERIMENTS AND RESULTS

A. Numerical Simulation with Naturalistic Driving Data

We collect the naturalistic driving data using a Lexus
prototype vehicle in Michigan and California, where two

2894

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:33:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example trajectories of the naturalistic driving data collected by
our test vehicle in Ann Arbor, MI (left) and Mountain View, CA (right).

Fig. 4. IRL model visualization: (a) recovered reward function of
naturalistic driving data, (b) desired gap of the ego vehicle.

example trajectories are shown in Fig. 3. Based on the
front vehicle detection utilizing the ACC radar, the car-
following events can be selected from the raw data. Then, the
selected trajectories are downsampled at 10Hz for training
and validation. To better understand the driver’s driving style,
the trajectories with full spectrum of speed (ranges from 0
to 35m/s) are selected for IRL modeling.

The recovered reward function in v−g space is shown on
the left side of Fig. 4, and the reward value is color coded.
The relationship between vehicle speed and desired gap is
then calculated as shown on the right side of Fig. 4. As can
be observed from this figure, the desired gap increases as the
vehicle speeds up.

After training, we select three pieces of leader speed
profiles with different characteristics and speed ranges for
validation purpose (see the top three plots in Figure 5). We
use the root mean square percentage error (RMSPE) of both
speed and gap, as defined in Equation (13), to evaluate the
accuracy of the proposed IRL-based car-following model.

RMSPE(x) =

√∑
t[x̂(t)− x(t)]2∑

t x(t)2
(13)

For comparison, the Intelligent Driver Model (IDM) [4] is
also implemented as the baseline. The IDM model is defined
by Equation (14) and (15), and the parameters used in this
work are listed in TABLE I.

v̇ = a

(
1−

(
v

v0

)δ
−
(
s∗ (v, v − vf)

g

)2
)

(14)

Fig. 5. Results of numerical simulation

TABLE I
IDM PARAMETERS

Variable Description Value

v0 Desired velocity 35 m/s
T Safe time headway 1.5 s
a Maximum acceleration 0.73 m/s2

b Comfortable Deceleration 1.67 m/s2

δ Acceleration exponent 4
s0 Minimum distance 2 m

TABLE II
RESULTS OF NUMERICAL SIMULATION

Speed RMSPE Gap RMSPE
Profile
1

Profile
2

Profile
3

Profile
1

Profile
2

Profile
3

IRL 5.7% 6.6% 22.6% 16.9% 51.5% 33.5%
IDM 7.8% 10.5% 25.7% 26.6% 71.1% 39.1%
Improvement 26.9% 30.1% 12.1% 36.5% 27.6% 14.3%

s∗ (v, v − vf) = s0 + v · T +
v · (v − vf)

2
√
ab

(15)

The lower six plots in Fig. 5 demonstrate the simulated
speed and gap of both IRL and IDM compared with the real-
world data. It shows that IRL can outperform the IDM model
in terms of reproducing the speed and gap trajectories. TA-
BLE II shows the quantitative results measured by RMSPE.
As we can see from the table, the IRL model performs better
in all three leader speed profiles for both speed and gap.

B. Human-in-the-Loop Simulation with the Game Engine

Game engines enable the design of video games for
software developers, which typically consist of a rendering
engine for 2-D or 3-D graphics, a physics engine for collision
detection and response, and a scene graph for the manage-

2895

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:33:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Three weather conditions are simulated in the game engine: Clear
Sky (Day), Clear Sky (Night), and Foggy.

ment of multiple elements (e.g., models, sound, scripting,
threading, etc.). Along with the rapid development of game
engines in recent years, their functions have been broadened
to a wider scope: data visualization, training, medical, and
military use. Game engines have also become popular op-
tions in the development of advanced vehicular technology
[22], which have been used to study driver behaviors [23],
prototype connected vehicle systems [24], [25], and simulate
autonomous driving [26], [27].

In this work, human-in-the-loop simulations are conducted
on a Digital Twin simulation environment built in our
previous work [28]. In the simulation environment, a three-
lane freeway scenario is built, and four drivers participate
in the test. The first three drivers provide manual driving
data for training the IRL models at three different weather
conditions, including clear sky (day), clear sky (night), and
foggy weather (see Fig. 6). When the trained P-ACC system
is activated, the corresponding driver monitors the system
and reacts by pushing the acceleration pedal or brake pedal
if he/she feels uncomfortable. The fourth driver provides
a sample trajectory, and then the most suitable pre-trained
model is applied by calculating the cumulative reward as
described in Section III-D. Similar to the other three drivers,
the reaction of the fourth driver is also recorded for perfor-
mance measurement.

Fig. 7 shows the desired gap of Driver A in three different
weather conditions. As shown in the figure, Driver A prefers
to maintain a smaller gap in the clear sky (day) condition,
medium gap in the clear sky (night) condition, and larger
gap in the foggy weather condition. This reveals that Driver
A performs more aggressively when the driving condition
(e.g., visibility) is good. Also, in the foggy weather, it can
be noticed that the desired gap of about 20m/s differs from
the neighboring speed. This shows that the driver does not
always perform optimally as preferred, and this imperfection
is more significant in the worse driving condition.

The driver’s comfort and trust of a P-ACC model can
be quantitatively measured using the takeover percentage.
Takeover denotes the status where the driver steps onto
the acceleration pedal or brake pedal when he/she feels
uncomfortable. The takeover percentage is the takeover time
divided by the overall P-ACC activation time, and the results
are presented in TABLE III. The results show that drivers are
satisfied with not only the IRL model trained specifically
from his/her demonstrations, but also the pre-trained model

Fig. 7. Desired distance gap of driver A in three different weather
conditions.

TABLE III
HUMAN-IN-THE-LOOP SIMULATION RESULTS: TAKEOVER PERCENTAGE

DURING A 200-SEC TRIP

Driver Max-Ent IRL IDM Improvement

A 3.5% 18.5% 81.1%
B 1.5% 17.4% 91.4%
C 1.6% 12.0% 86.7%

D (Untrained) 2.2% 33.5% 93.4%

selected based on the maximum cumulative reward criterion.

V. CONCLUSION AND FUTURE WORK

In this research, we have presented a personalized car-
following system, namely P-ACC system. We have first cat-
egorized car-following scenarios using environmental factors
such as weather conditions. Then, the model-based maximum
entropy Inverse Reinforcement Learning has been applied to
learn the specific driving style from demonstrations for each
subcategory. The relationship between the driver’s desired
gap and current speed can be derived from the recovered
reward function. The PID controller has been implemented
so that the ego vehicle can maintain the preferred gap with
its leader. The driver without trained model can also use the
other driver’s model under the same weather conditions using
the maximum cumulative reward criterion. Numerical simu-
lation with real-world naturalistic driving data has shown
that, the accuracy of reproducing the real-world driving
profile improves up to 30.1% in terms of speed and 36.5%
in terms of distance gap, when P-ACC is compared with
the IDM. Game engine-based human-in-the-loop simulation
has demonstrated that, the takeover frequency of the driver
during the usage of P-ACC decreases up to 93.4%, compared
with that during the usage of IDM-based ACC.

For future work, online IRL training can be incorporated
into the current system so that the driving style can be learnt
incrementally. In addition, if the local driving model changes,
the federated learning functionality is expected to adjust the
models on the clouds accordingly. Finally, instead of only
using the takeover as the measurement of the driver’s degree
of satisfaction, it can be considered as the feedback to the
online IRL process while the P-ACC is activated.

2896

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:33:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Toyota. (2021) Toyota Safety Sense: The Standard for Safety.
[Online]. Available: https://www.toyota.com/safety-sense/

[2] Volkswagen. (2021) Adaptive Cruise Control. [On-
line]. Available: https://www.volkswagen-newsroom.com/en/
adaptive-cruise-control-acc-3664

[3] Ford. (2021) Adaptive Cruise Control. [Online].
Available: https://www.ford.com/technology/driver-assist-technology/
adaptive-cruise-control/

[4] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Dynamical model of traffic congestion and numerical simulation,”
Phys. Rev. E, vol. 51, pp. 1035–1042, Feb 1995. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.51.1035

[5] P. G. Gipps, “A behavioural car-following model for computer simula-
tion,” Transportation Research Part B: Methodological, vol. 15, no. 2,
pp. 105–111, 1981.

[6] G. F. Newell, “A simplified car-following theory: a lower order model,”
Transportation Research Part B: Methodological, vol. 36, no. 3, pp.
195–205, 2002.

[7] A. Khodayari, A. Ghaffari, M. Nouri, S. Salehinia, and F. Alimardani,
“Model predictive control system design for car-following behavior in
real traffic flow,” in 2012 IEEE International Conference on Vehicular
Electronics and Safety (ICVES 2012). IEEE, 2012, pp. 87–92.

[8] B. Gao, K. Cai, T. Qu, Y. Hu, and H. Chen, “Personalized adaptive
cruise control based on online driving style recognition technology and
model predictive control,” IEEE transactions on vehicular technology,
vol. 69, no. 11, pp. 12 482–12 496, 2020.

[9] P. Angkititrakul, C. Miyajima, and K. Takeda, “Modeling and adap-
tation of stochastic driver-behavior model with application to car
following,” in 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2011, pp. 814–819.

[10] J. Hongfei, J. Zhicai, and N. Anning, “Develop a car-following model
using data collected by” five-wheel system”,” in Proceedings of the
2003 IEEE International Conference on Intelligent Transportation
Systems, vol. 1. IEEE, 2003, pp. 346–351.

[11] L. Chong, M. M. Abbas, and A. Medina, “Simulation of driver
behavior with agent-based back-propagation neural network,” Trans-
portation Research Record, vol. 2249, no. 1, pp. 44–51, 2011.

[12] X. Huang, J. Sun, and J. Sun, “A car-following model considering
asymmetric driving behavior based on long short-term memory neural
networks,” Transportation research part C: emerging technologies,
vol. 95, pp. 346–362, 2018.

[13] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,”
Automatica, vol. 129, p. 109597, 2021.

[14] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[15] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.

[16] H. Gao, G. Shi, G. Xie, and B. Cheng, “Car-following method based
on inverse reinforcement learning for autonomous vehicle decision-
making,” International Journal of Advanced Robotic Systems, vol. 15,
no. 6, p. 1729881418817162, 2018.

[17] L. Guo and Y. Jia, “Inverse model predictive control (impc) based
modeling and prediction of human-driven vehicles in mixed traffic,”
IEEE Transactions on Intelligent Vehicles, 2020.

[18] Y. Wang, Z. Wang, K. Han, P. Tiwari, and D. B. Work, “Personalized
adaptive cruise control via gaussian process regression,” in 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC).
IEEE, 2021, pp. 1496–1502.

[19] Z. Wang, X. Liao, X. Zhao, K. Han, P. Tiwari, M. J. Barth, and
G. Wu, “A Digital Twin paradigm: Vehicle-to-Cloud based advanced
driver assistance systems,” in 2020 IEEE 91st Vehicular Technology
Conference, May 2020, pp. 1–6.

[20] OpenWeatherMap. (2021) Weather API. [Online]. Available: https:
//openweathermap.org/api

[21] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[22] J. Ma, C. Schwarz, Z. Wang, M. Elli, G. Ros, and Y. Feng, “New
simulation tools for training and testing automated vehicles,” in Road

Vehicle Automation 7, G. Meyer and S. Beiker, Eds. Cham: Springer
International Publishing, 2020, pp. 111–119.

[23] Z. Wang, X. Liao, C. Wang, D. Oswald, G. Wu, K. Boriboonsomsin,
M. Barth, K. Han, B. Kim, and P. Tiwari, “Driver behavior modeling
using game engine and real vehicle: A learning-based approach,” IEEE
Transactions on Intelligent Vehicles, pp. 1–1, 2020.

[24] Z. Wang, G. Wu, K. Boriboonsomsin, M. Barth et al., “Cooperative
ramp merging system: Agent-based modeling and simulation using
game engine,” SAE International Journal of Connected and Automated
Vehicles, vol. 2, no. 2, 2019.

[25] Y. Liu, Z. Wang, K. Han, Z. Shou, P. Tiwari, and J. Hansen, “Vision-
cloud data fusion for adas: A lane change prediction case study,” IEEE
Transactions on Intelligent Vehicles, pp. 1–1, 2021.

[26] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Conference on robot
learning. PMLR, 2017, pp. 1–16.

[27] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta et al., “Lgsvl simulator:
A high fidelity simulator for autonomous driving,” in 2020 IEEE
23rd International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2020, pp. 1–6.

[28] Z. Wang, K. Han, and P. Tiwari, “Digital twin simulation of connected
and automated vehicles with the Unity game engine,” in 2021 IEEE
1st International Conference on Digital Twins and Parallel Intelligence
(DTPI). IEEE, 2021, pp. 1–4.

2897

Authorized licensed use limited to: MIT. Downloaded on August 11,2025 at 14:33:19 UTC from IEEE Xplore. Restrictions apply.

