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Abstract— Background subtraction (BS) has been a norm
for moving object detection along a classical computer vision
pipeline, especially when the labelled data is largely unavailable.
It has been widely used for infrastructure-based sensing such
as traffic surveillance with roadside cameras. Existing BS algo-
rithms focus on detecting moving objects, while the temporal
motionless objects are neglected. This leads to performance
degradation in particular at signalized intersections where
vehicles may stop to wait in red. In this paper, we propose
a hierarchical adaptive BS method which can eliminate the
cumulative errors for those temporally static objects based
on images from roadside fish-eye cameras in real-time. The
proposed method is validated in both the CARLA simulation
and the real-world environment. The results show that our
method outperforms ViBe and LOBSTER by about 45% and
39%, respectively, on recall, without compromising too much
in precision.

I. INTRODUCTION

Evolving with the advance in sensor technology and edge
computing, research on next-generation infrastructure-based
traffic surveillance systems has been active in recent years.
By leveraging computer vision (CV) techniques, such sys-
tems can provide high-fidelity (e.g., object-level) perception
information to enable cooperative automated driving in a
mixed traffic environment [1].

Although deep learning-based CV approaches have gained
momentum in the past few years, the conventional inference
pipeline is still attractive, especially for roadside sensing,
mainly due to its non-reliance of labelled data and gen-
eralizability. As one of the key steps along the pipeline,
background subtraction (BS) which aims to separate moving
objects (i.e., “foreground”) from the static scene (i.e., “back-
ground”) has been widely used for infrastructure-based traffic
surveillance on freeways [2]. However, most of existing
BS algorithms [3][4] are not capable of separating objects
(e.g., vehicles) that keep stationary for a series of frames
from the background, which is a commonly observed traffic
scenario at a signalized intersection. In addition, to meet
the requirement of 24/7 traffic surveillance, a dynamic BS
strategy is needed to adapt to the changes in weather and
lighting conditions.

To solve the aforementioned problems, we propose an in-
novative cascaded adaptive background subtraction algorithm
based on Adaptive Frame Difference and modified Gaussian
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Mixture Model (GMM). This algorithm can dynamically
update the regions without objects and reserve the regions
with objects so that much fewer trials are left in background.
For the previous BS algorithms, they aim at separating
moving objects, while our method tries to remove objects
no matter whether they are moving or stay still. Also for
the fish-eye camera which gains much attention recently,
some feature-based methods such as LBSP and LOBSTER
fail to distinguish the foreground because of the major edge
distortion in the fish-eye images. To validate the proposed
algorithm, we apply it to both the CARLA simulation envi-
ronment and the real-world testbed. The major contributions
of this study are summarized below.
• Propose a hierarchical BS algorithm that can efficiently

filter out temporally static objects frequently observed
in traffic scenarios at signalized intersections.

• Compare with state-of-the-art BS algorithms using both
simulation and real-world datasets.

• Create a fish-eye camera dataset with ground truth label
in CARLA simulator.

The remainder of this paper is organized as follows.
Section II reviews a few typical BS algorithms in detail.
Then, the innovative cascaded BS algorithm is introduced
in Section III. In Section IV, we compare the existing BS
algorithms with the proposed algorithm in both the simula-
tion environment and the real-world. Finally, we conclude
the work and discuss future directions in Section V.

II. RELATED WORK
Since the 1990s, a number of methods have been proposed

to improve the background subtraction (BS) aiming at mak-
ing the detection process more robust to noise, background
motion, and camera jitter [4] [2]. Generally, these algorithms
have three common steps: initialization, foreground detec-
tion, and background maintenance. Initialization intends to
provide the BS algorithm with a clean background at the be-
ginning, which may lay a solid foundation for the subsequent
steps. The quality of initialization also influences the quality
of the generated background. This step can be realized using
different statistical methods, including fuzzy model-based,
kernel density-based, and feature-based [3]. The second
step, foreground detection, separates the foreground objects
from the image, and the background is left. In this step,
the current frame is compared with the real-time generated
background by subtraction or statistical method. Background
maintenance updates the previously generated background
with the information from the incoming frames. The rest of
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this section will highlight and discuss some fundamentals
and popular background subtraction algorithms.

A. Frame Difference

The most straightforward way to model background is
based on mathematical theories, such as the temporal average
[5] [6]. This type of methods can remove most moving
objects from background but may include part of foreground
into background when updating, because static foreground
objects may exist in all frames for average. Thus, the
adaptive-selection method is proposed [7]. In the adaptive-
selection method, only the regions without moving objects
are updated, but this still does not solve the problem thor-
oughly. For example, if objects move slowly or stop, they
may be updated into background.

B. Gaussian Models

The Gaussian method includes single Gaussian distribu-
tion [8] [9] and Gaussian Mixture Model (GMM) [10] [11].
For single Gaussian method, every pixel inside each frame
is modeled with a Gaussian distribution in the RGB space.
Single Gaussian approach uses likelihood or Mahalanobis
distance of current frame and background to differentiate
foreground from background. GMM method uses weighted
multiple Gaussian models for better modeling results, and
it significantly outperforms the single Gaussian distribution
method [11]. GMM method shows good performance on both
the outdoor scene and low illumination scene. However, it
cannot solve the aforementioned problem presented by the
Frame Difference method.

C. Visual Background extractor (ViBe)

Compared to the Gaussian model methods, ViBe [12] tries
to model background with a set of pixels. Assuming v(x) is
the color value of the pixel at position x, and vi represents the
sampled value at time i. The set of pixel values at position
x is M(x) = v1,v2, . . . ,vN . The N elements are sampled
from previous video frames. By comparing the current pixel
value v(x) to the most closed points in the set M(x), if
the number of points within a sphere of radius R centered
at v(x) is larger than a predefined threshold, then v(x) is
traded as background. For the background updating, the new
background pixel is added to M(x), while a random old
background pixel v j is discarded. The random abandonment
ensures a smooth and exponentially decaying lifespan for
sample values that contribute to the pixel models.

D. The Pixel-Based Adaptive Segmenter (PBAS)

PBAS [13] combines sample consensus and ViBE to-
gether, and determines whether a pixel belongs to back-
ground or not by evaluating the sample consistence. It
introduces control theory so that adaptive threshold and
learning rate may vary with different background complexity.
The more complex the background is, the higher probability
of misjudgment it is. Thus, complex background should align
with high threshold and low learning rate. PBAS shows
outstanding robustness on slow illumination change.

E. Local Binary Similarity Patterns (LBSP)

LBSP [14] is a feature-based method for background sub-
traction. Binary feature descriptors are developed to evaluate
the disparities in intensity between pairs of pixels under
different configurations. LBSP reformulates the region R into
a n×n square, and it can be obtained by comparing the center
pixel with the neighboring pixels which may be all the pixels
or a subset of P pixels in R. LBSP is defined as

LBSPR(xc,yc) =
P−1

∑
p=0

d(ip− ic)2p (1)

where d(x) is a threshold truncation function and ic cor-
responds to the intensity of the center pixel (xc,yc). The
updated LBSP may show its ability to express the local
feature. However, when applied to the time-varying dataset,
LBSP will add some corner point noises if the object has the
same color gradient or similarity to the background despite
the difference in color. Also, LBSP is likely to be affected
by noises and blurred regions.

F. LOcal Binary Similarity segmenTER (LOBSTER)

LOBSTER [15] combines ViBe and LBSP, which obtains
excellent detection performance in general scenes. LBSP
feature and pixel value areas are all compared to the his-
torical background model (similar to ViBe). If one of them
is beyond the corresponding threshold or the union of them
is within a specific interval, then the target region is regarded
as background. Although LOBSTER shows the ability to
separating the foreground, complexity of the model structure
requires significant computation load, resulting in challenges
for real-time performance.

III. METHODOLOGY

In this paper, the key idea to eliminate the temporally static
objects is to dynamically update the regions without objects
and reserve the regions with objects. Thus, the mask of
foreground and background should be used to choose which
region needs to be updated. The masking strategy needs to
be carefully designed to balance the system performance
when updating between moving and static objects, as well
as illumination or environment change. For example, if the
masking strategy is too aggressive, some static objects will
be included into background. Nevertheless, if the strategy
is too conservative, some regions may keep the same even
when the illumination changes.

A. cascaded structure

To deal with this problem, we propose a hierarchical
strategy which is inspired by both Adaptive Frame Differ-
ence (AFD) [16] [4] and Gaussian Mixture Model (GMM).
Either AFD or GMM can not realize satisfactory background
subtraction results. AFD may result in some image faults
which cannot be updated in some regions because of the
cumulative errors, thus regarded as foreground. GMM may
mix the objects and background together and noises are left
over on the generated background. Therefore, we combine
these two methods into a cascaded structure for overcoming
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the shortcomings of each method, as shown in Fig. 1, where
AFD accounts for choosing updated region while GMM is
responsible for updating region.

More specifically, the first (AFD) module is used to obtain
the background mask with fewer foreground trails and the
primitive low quality background yt,1. Then, a GMM model
g1 is applied in the second module, which takes the mask and
defective background as the input and generates a relatively
clean background yt,2. The third module is another AFD
module, accepting an output yt,3 from the second GMM
model g2 as the "background" to obtain the mask. g2 keeps
being directly updated so that its result has the same global
color distribution as the ground truth, and some mild blurs
of shadow and vehicle are acceptable for this module. The
trail region from yt,1 is identified and updated with the
background yt,2 from g1 by AFD. yt,3 can bring more robust
information to the background in the color space while
keeping the detail in yt,2. The output yt,4 is fed into the third
GMM model g3 and the final background yt can be obtained.
The detailed function of each module, i.e., AFD or GMM,
is introduced in the rest of this section.

B. Adaptive Frame Difference (AFD) Module

The existing AFD methods only update the region without
moving objects, which fails to remove static objects. There-
fore, we change it to update the region without objects. We
compare the current frame I to the current background B
and apply a threshold truncation to obtain a mask of the
foreground M. The reverse of mask Mbg is expected to be
able to exclude the objects.

d = (BR− IR)2 +(BG− IG)2 +(BB− IB)2

M = T hreshold(d)

Mbg = M̄

(2)

Then the updated region and maintained region can be
obtained and updated by

Bnew,bg = (1− lr)B ·Mbg + lr · I ·Mbg

Bnew, f g = B ·M
B = Bnew,bg +Bnew, f g

(3)

The AFD module is designed to remove objects. However,
the experiments show that the AFD module has a relatively
narrow tolerance to illumination change, noise, and moving
objects. If the threshold is set high, edges of some objects
will be included; if it is set low, camera noises and illu-
mination will not be updated. Therefore, a GMM module,
following the AFD module, is applied for compensation.

C. Gaussian Mixture Model (GMM) Module

GMM module tries to model the distribution of pixels in-
side the image with N Gaussians, and each of them accounts
for different image features and textures. The likelihood of
a pixel being a background pixel is:

P(It) =
N

∑
n=1

αn

(2π)3/2|Σn|1/2 exp
1
2 (It−µn)

T Σ−1
n (It−µn) (4)

where αn is the associated weight for the n-th Gaussian
component and Σαn = 1. For computational simplicity, the
covariance matrix, Σn, is set to be diagonal because the
R,G,B channels are assumed to be independent.

The standard deviation and mean of the measurements are
used to determine if the pixel is background. If all channels’
(RGB) values are within the threshold ||Zt−µn||< kσn, the
pixel is regarded as the background. Next, model of the
background is updated by

α
′
n← (1−δ )α

′
n +δ

µ
′
n← (1−ρ

′
n)µ

′
n +ρ

′
nZt

σ
2′
n ← (1−δ )α

′
n +ρ

′
n(Zt −µ

′
n)

T (Zt −µ
′
n)

ρ
′
n← σN (Zt |µ

′
n,σ

′
n)

(5)

where ρ is an updating parameter and alpha is the user-
defined learning rate. In this step, the weight of background
model is strength and other models’ weight is shorten by
αn ← (1−α)αn. If the pixel is judged as foreground, the
models’ are initialized as current measurement αn = σ ,µn =
Zt ,σ

2
n = σ

2.

Fig. 1. The cascaded structure

IV. EXPERIMENT

To validate the performance of the proposed adaptive cas-
caded BS algorithm, we conducted the experiment in both the
simulation environment and the real world. It is also noted
that in this study we focused on the background subtraction
on images from fish-eye cameras which are already installed
in the real-world testbed. An effective way to measure the
system performance is to compare the background mask with
the ground truth background. However, it is difficult to obtain
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Algorithm 1 Algorithm for Modified GMM
Input: Initialized Background X0, Current Video Frames xt ,

Learning Rate lr
Output: Background yt

1: if (start video) then
2: set yt−1 = X0
3: end if
4: Calculate pixel-wise distance d1 = (xR

t − yR
t−1)

2 +(xG
t −

yG
t−1)

2 +(xB
t − yB

t−1)
2

5: Apply threshold function to get the binary mask. m
′
1←

T hreshold(d1)
6: Fill the inner holes in the mask, and apply im-

age morphology transformation on the mask. m1 ←
MorphoTrans(m

′
1)

7: Update the background region by y1
t = (1− lr) · yt−1 ·

m̄1 + lr · xt · m̄1, while the foreground region keeps as
last background.

8: yt,2← g1(yt,1)
9: For k iterations, yt,3← g2(xt)

10: Calculate pixel-wise distance d2 = (yR
t,3− yR

t,2)
2 +(yG

t,3−
yG

t,2)
2 +(yB

t,3− yB
t,2)

2

11: Apply threshold function to get the binary mask. m
′
2←

T hreshold(d1)
12: Fill the inner holes in the mask, and apply im-

age morphology transformation on the mask. m2 ←
MorphoTrans(m

′
2)

13: Update the background region by y4
t = (1− lr) ·yt,2 ·m̄2+

lr · yt,3 · m̄2, while the foreground region keeps as last
background.

14: yt ← g3(y4
t )

15: return the background yt

the real-time ground truth background in a real-world setting
at the pixel level. Thus, we use the simulation-based dataset
from CARLA [17] for the quantitative analysis, where the
ground truth of the pixel-wise segmentation is available.

In the real-world experiment, a fisheye camera is deployed
at a real-world intersection of University Avenue and Iowa
Avenue in Riverside, California, to obtain the video stream of
the traffic all day long. The fisheye camera faces vertically to
the ground for the broadest cover of intersections and roads.

Also, the fisheye camera is different to ordinary cameras
for its unique FOV and distortion that objects at the fisheye
image edge are stretched. These features also leads to the
failures of feature-based methods. It is necessary and critical
to calibrate the fisheye images. Also, wide FOV lens distor-
tion calibration can not be applied in fisheye camera for it
is limit to a relative narrow FOV (generally 120◦). In fact,
fisheye camera calibration [18] is mature and widely used
in fisheye camera system. In our experiment, fisheye camera
calibration is used in both the simulation dataset and in the
real-world dataset.

A. Simulation Experiment

To examine the feasibility of the proposed algorithm, we
first implemented the algorithm in a CARLA-based simu-
lation environment. We used the map Town10HD provided
by CARLA for simulation, which presents a typical urban
arterial network including a few signalized intersections.
We chose one intersection in the map, as shown in Fig.
3, for collecting video frames at the traffic light where
vehicles may stop to wait for the signals (to turn green).
In the simulation environment, 32 vehicles were spawned in
the map, randomly traversing the intersection. In addition,
because there is no ready-to-use fish-eye camera model
provided in CARLA, we adopted a transformation method
called cubic2fisheye [19] to synthesize the fish-eye video by
combining multiple regular cameras from different perspec-
tives. The frame rate is 10 fps and the resolution is 960×960.

(a) The sewed up cubic camera
image, and there is no edge error
because of 90 degree FOV

(b) Fisheye image

Fig. 2. Cubic to Fisheye

Fig. 3. The cubic camera model and the hemisphere

1) Cubic to Fisheye: We set five cameras at the same
position with different angles, so they can take the image of
each surface of a cubic, as shown in Fig. 2(a). These five
cameras are located at the cubic center and faced to the five
sides except the bottom. To ensure that every camera has
no overlapped field of view (FOV) and no deficient FOV,
we set the FOV of every camera 90 degrees, enabling the
alignment of images from all cameras. With this configura-
tion, the cubic camera may obtain RGB information from
every direction except the bottom one. Then, we projected
every pixel from the top half of the cubic surface to a
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hemispherical surface. After getting this transformation, we
applied a polynomial fitting model to project it on a 2-D
plane. Fig. 3 shows the relationship between the azimuth
angle and the radius on the 2-D plane, which is considered
as a polynomial fitting model:

r(θ) = k1θ + k2θ
2 + k3θ

5 + k4θ
7 + k5θ

9 (6)

As is shown in Fig. 2(b), the fish-eye image can cover 180
degrees of FOV. The outer blue circular ring is the sky which
means this image includes all-direction skyline.

2) Results and Analyses: Fig. 4 demonstrates a sample
frame showing the synthesized fish-eye image, ground truth
label, and the BS results of the proposed algorithm, GMM
algorithm, ViBe, PBAS, as well as LOBSTER. We adopted
the confusion matrix as the metric for the CARLA dataset.
After applying the BS algorithms, the generated foreground
masks were compared to the ground truth labels at the
pixel level. The pixels of the overlapped region and non-
overlapped region are obtained, so that the confusion matrix
of each frame is available. Then the True Positive (TP),
False Positive (FN), True Negative (TN), and False Positive
(FP) are normalized and averaged across all the pixels in
the dataset along the entire simulation time span. Other
induced metrics, including precision, recalls, FPR, FNR, and
F-Measure, are introduced for comparison.
• Precision (Pr): TP/(TP+FP), larger is better
• Recall (Re): TP/(TP+FN), larger is better
• False Positive Rate (FPR): FP/(FP+ TN), smaller is

better
• False Negative Rate (FNR): FN/(FP+TN), smaller is

better
• Percentage of Wrong Classification (PWC/PBC) : 100 ·
(FP+FN)/(TP+FN+FP+TN), smaller is better

• F-Measure (F1): (2 ·Pr ·Re)/(Pr+Re), larger is better
The ground truth labels (foreground masks) are generated

by the segmentation fish-eye camera, so that any vehicles’
shadows are not included in the labels. However, most BS
algorithms cannot distinguish the shadows from objects so
that the shadows are regarded as part of objects. This is the
main reason for those large FP values.

As can be observed from TABLE I, our method can
significantly retain and subtract static foreground, while
other methods may recognize some objects as background.
Therefore, our method’s FN is much lower than all other
methods and our method reaches a higher recall. Compared
to the SOTA (LOBSTER), our method shows better TP
and FN. A hypothesis is that as a feature-based method,
LOBSTER may be influenced by the distortion from the fish-
eye camera and discriminate some foreground at edge region
as background. It should be noted that the measurement
was conducted at the pixel level in this study. Although the
average precision is not very high, it is good enough for
accurate detection and localization applications. In addition,
our method outperforms LOBSTER in terms of F-Measure
(a comprehensive metric) by 0.2096, showing the superiority.

B. Real-world Experiment

To evaluate the system performance under dynamic illu-
mination and weather (e.g., windy) conditions, we collected
a video clips/dataset from the fish-eye camera installed at
the intersection of University Avenue and Iowa Avenue in
Riverside, California. This video clip lasts for seven hours
and is collected from morning to afternoon on 02/21/2022.
The first half dataset is collected with cloudy condition and
the rest part is collected with sunlight condition so the dataset
includes shadow and sunlight variation. The frame rate is 10
fps and the resolution is 960×960.

Fig. 5 demonstrates a sample frame at 35 seconds showing
the undistorted image from the fish-eye camera and the
BS results of the proposed algorithm, GMM algorithm,
as well as ViBE algorithm. Although it is challenging to
quantify the performance with the real-world datasets, the
visualization results indicate that our method is still reliable
to identify the vehicles waiting at signals, trees swaying
in the wind, and the rapid illumination changes due to the
cloud movement. However, none of GMM, ViBe, PBAS and
LOBSTER are capable of detecting temporally static objects
due to iterative updating. They may consider those target
vehicles as background. The longer the vehicles wait, the
more likely they are classified as background. LOBSTER
also includes some edge blobs into foreground mask due to
the initialization being much longer than other methods.

Fig. 6 shows a sample frame of shadow variation after 5.05
hours and the related BS results of the proposed algorithm.
Our method successfully recovers shadow and illumination
variation into background also separate vehicles from the
frame no matter moving or idling. Other methods also
recover shadow but some static vehicles or slowly variation
are included into background.

Further more, our method also can process the real-world
dataset in real-time. GMM, ViBe and PBAS can also meet
the real-time requirement, while LOBSTER takes 3 times as
long as our method.

V. CONCLUSION

In this paper, a cascaded adaptive background subtraction
method is proposed for the need to separate the temporally
static objects (e.g., vehicles waiting at signals) in the traffic
scenario at signalized intersections. From the experiments
in CARLA datasets, our method outperforms ViBe and
LOBSTER by 44.89% and 38.48%, respectively, on recall,
while keeping a relative high precision. In the real world
datasets, the results also show that the proposed method has
more reliable segmentation performance than GMM, ViBe,
PBAS and LOBSTER.

In terms of future work, the hierarchy structure can be
reinforced by the feature-based methods such as LBSP for
ordinary camera videos. Moreover, a higher-efficiency real-
ization will be explored by the implementation with CUDA
coding so that the system can be run on GPU for faster speed.
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(a) One frame in CARLA dataset (b) Ground truth label (c) Our method (d) GMM

(e) ViBe (f) PBAS (g) LOBSTER

Fig. 4. CARLA dataset and experiments

TABLE I
CONFUSION MATRIX OF METHODS

Method TP FN TN FP Precison Recall FPR FNR PWC/PBC F-Measure FPS
Our Method 1.242% 0.415% 98.243% 0.618% 0.668 0.750 0.006 0.004 0.010 0.707 8.569

GMM 0.265% 1.426% 98.665% 0.196% 0.575 0.157 0.002 0.014 0.016 0.250 23.898
ViBe 0.509% 1.182% 98.665% 0.206% 0.712 0.301 0.002 0.012 0.014 0.430 29.689
PBAS 0.662% 1.029% 98.37% 0.489% 0.561 0.392 0.005 0.010 0.015 0.470 8.44

LOBSTER 0.616% 1.075% 98.665% 0.206% 0.749 0.364 0.002 0.011 0.013 0.497 3.297

(a) One frame of real-world dataset (b) Our method (c) GMM

(d) ViBe (e) PBAS (f) LOBSTER

Fig. 5. Real world dataset and experiments at 35 seconds
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(a) One frame of real-world dataset (b) Our method (c) GMM

(d) ViBe (e) PBAS (f) LOBSTER

Fig. 6. Real world dataset and experiments at 18180 seconds
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