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Abstract—Personalization in driving behavior research is cru-
cial for developing intelligent vehicles that can safely coexist with
human-driven vehicles in mixed-traffic environments. By account-
ing for the diversity of human driving behaviors, personalized
modeling can improve predictive capabilities of intelligent vehicles
and foster a more balanced traffic ecosystem. This paper presents a
systematic review on personalization in driving behavior, evaluat-
ing their potential to enhance road safety, transportation efficiency,
and human-centric mobility. It proposes a taxonomy to categorize
personalized driving behaviors and surveys relevant datasets, mod-
eling methodologies, and techniques for validating personalized
driver models. Focusing on personalized driving behavior, the
study emphasizes the need for intelligent vehicles to adapt to the
complex and heterogeneous behaviors exhibited by human drivers
to enhance predictability, responsiveness, and ultimately create
a safe and efficient traffic environment. Lastly, key challenges
are identified, along with promising future research directions to
advance personalized driving behavior research.

Index Terms—Personalization, driving behavior modeling,
data-driven techniques, human-in-the-loop simulation, field
experiments.

I. INTRODUCTION

A. Motivation

of human-centered mobility [1], a concept that prioritizes
the needs and experiences of people in the design and imple-
mentation of transportation systems. While traditional driving
behavior study has focused on collective trends, the true com-
plexity of driving behavior lies in its diversity among individuals,
each shaped by unique preferences, skills, and purposes. This
diversity is not just a challenge to the understanding of collec-
tive behavior but a vital area of study, necessitating a deeper

T HE study of driving behavior is a cornerstone in the pursuit
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exploration into the unique traits characterizing each person’s
driving behavior. In the context of emerging intelligent vehicles
(IVs) coexisting with human-driven vehicles in mixed-traffic
environments, the concept of personalization in driving behavior
becomes even more crucial. In this study, personalization refers
to the customization of driving systems to recognize and adapt to
the unique driving patterns, habits, and preferences of individual
drivers. Such understanding is essential for the advancement of
IVs and for ensuring their integration into our traffic ecosystems
in a manner that is seamless and harmonious.

In this light, personalization in driving behavior emerges as
a multifaceted concept that encompasses the distinctive driving
patterns (observable behaviors and sequences of actions), habits
(regular practices or tendencies, often unconscious), and prefer-
ences (personal choices based on likes or dislikes) exhibited by
individual drivers throughout the driving process. This concept
covers the responses and adaptive strategies they employ in re-
action to varying external stimuli, highlighting a driver’s person-
alized interaction with static road elements and other dynamic
road users. These specific reactions and interactions are deeply
influenced by a constellation of factors including, but not limited
to, individual personality traits, driving experiences, and specific
situational conditions like weather, traffic, and road types, all of
which collectively shape their unique driving behavior.

In recent years, research has revealed the significant implica-
tions of personalizing driving behavior across various sectors
within transportation and vehicle technology. Studying these
behaviors offers extensive benefits, including enhancing user
experiences in human-driven vehicles, advancing technologies
in autonomous vehicles, and shaping informed transportation
policies. For human-driven vehicles, knowing the driver’s pref-
erence enhances the user experience by providing personalized
steering control setting [2] and vehicle personalized cabin cli-
mate conditioning [3], [4]. For IVs, i.e., partially or fully auto-
mated vehicles, understanding other road users’ driving behavior
allows IV to predict its surrounding environment [5], [6], and
react appropriately to unexpected events or changes. This is
where personalization plays a crucial role. By tailoring pre-
dictions to individual driving behaviors, IVs can achieve more
precise assessments of their environment. Such enhanced accu-
racy is beneficial for various vehicular communication applica-
tions [7], which are crucial for the safe and efficient operation of
these vehicles. Notably, in applications that require prediction,
like cooperative maneuvering and intent sharing, the improved
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understanding gained from personalization is invaluable. In
cooperative maneuvering, including negotiation scenarios, IVs
can anticipate and coordinate their movements more effectively
with other road users [8]. Similarly, intent sharing applica-
tions [9] benefit as IVs can reliably communicate their future
actions, such as turning or braking, to surrounding vehicles.
This level of predictive capability, underpinned by personal-
ized behavior models, is crucial for fostering safer and more
harmonious interactions between automated and human-driven
vehicles in mixed traffic environments. As a result, personalized
autonomous systems [10], [11] will become more trustworthy
and reliable to be accepted and adopted by the public. Besides
vehicle technologies, the study of personalized driving patterns
can significantly influence the development of informed, eq-
uitable rules and regulations in sectors. For example, driving
pattern learning for driving risk scoring [12], [13] can be used
by insurance companies to tailor pricing, catalyzing a new era
of personalized and responsible road usage.

Personalization in driving behavior lies at the intersection
of two fields: driving behavior modeling and personalization.
The field of driving behavior modeling has witnessed a surge
in scholarly investigation, with several comprehensive surveys
elucidating various approaches that have been undertaken in this
domain [14], [15], [16]. Meanwhile, reviews on personalized
Advanced Driver-Assistance Systems (ADAS) [17], [18] have
summarized the approaches to implement personalization on ve-
hicles. However, despite valuable contributions, contemporary
surveys exhibits notable shortcomings:

® QOvergeneralization in driving behavior modeling. A criti-
cal limitation of solely studying driving behavior without
personalization is the overreliance on generalized data,
which consequently leads to the overlooking of individ-
ual driver variability. Additionally, these studies often use
static modeling methods that fail to capture the dynamic
and evolving nature of individual driving behaviors, limit-
ing their real-world applicability and adaptability.

e Narrow scope in ADAS personalization: Surveys for per-
sonalized ADAS emphasizes personalization primarily fo-
cuses on vehicle-level adaptations, such as human-machine
interface customization and control settings. This narrow
focus often misses the broader aspect of personalization,
leading to an incomplete understanding and integration of
personalized driving behavior into system design.

e Lack of comprehensive modeling framework: Across both
fields, there is a notable absence of a comprehensive and
structured process for developing models that encapsulate
personalized driving behavior. This gap hinders the ef-
fective integration of individual driver characteristics into
predictive models and practical applications.

B. Contributions

Compared to existing surveys, our key contributions include:

® We performed a comprehensive review of current studies
on personalization in driving behavior.

e We proposed a comprehensive taxonomy, mapping
modeling strategies across various time scales, behavioral
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response stages, and granularity for a systematic under-
standing of personalized driving behavior.

® We elaborated the process of personalizing driving be-
havior, including data collection, behavior modeling, and
model validation.

® We delivered an insightful discussion to identify promising
areas for personalized driving behavior research.

C. Study Scope

This review discusses personalization in driving behavior and
especially focuses on how driving behaviors are characterized
and modeled for each individual driver. To be specific, it explores
the theoretical foundations and methodologies of personalized
behavior modeling, as well as the integration of individualized
data to enhance personalization for algorithms and systems,
allowing for the adaptation of general driver models to meet
specific personal needs.

This study emphasizes the prevalent data-driven approaches
in the field of driving behavior personalization. The rationale
behind this is that individual driving behaviors are complex and
diverse, influenced by a myriad of factors. Traditional rule-based
and model-based approaches often fall short in capturing this
complexity. By leveraging a vast amount of data and a number of
modern machine-learning techniques, researchers can develop
models that are both more accurate and specifically tailored to
individual drivers. This data-driven methodology aligns with
the trends and findings identified in our systematic review of the
literature, reflecting the latest advancements and challenges in
the domain.

To carry out a systematic literature search, this study follows
the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analysis) guidelines [19]. The literature search is con-
ducted using two databases: Google Scholar and IEEE Xplore
digital library. The step-by-step screening process is shown in
Fig. 1. Initially, the title or keywords of the article must include
“personalization”, “personal”, or “personalized”. Secondly, the
scope is narrowed to literature published within the last decade,
specifically from 2013 to 2023. Subsequently, an in-depth search
is executed on these filtered results, employing a combination of
key terms: ‘Driving’, 'Driver’, ‘Vehicle’, ’Car’, ‘ADAS’, *Cruise
control’, ‘Driver profile’, and ’Behavior’. The final step involves
a careful exclusion of duplicate articles and those not directly
relevant to the central theme of personalized driving behavior,
ensuring a focused and relevant collection of literature for our
study.

D. Article Organization

The remainder of this paper is organized to correspond with
the three main stages of the personalization process: data con-
struction, behavior modeling and algorithm development, and
model evaluation. Section II presents a taxonomy of person-
alized driving behavior, establishing the foundation for the
subsequent sections. Section III discusses the construction of
a personalized driving behavior dataset, including different cat-
egories of available datasets, data acquisition and processing,
forming the basis of our data-driven approach. In Section IV,
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Fig. 1. The PRISMA schema for literature search in this study.

we elaborate approaches to developing a personalized model and
system for driving behavior. Section V focuses on the evaluation
of the personalized model. Section VI is dedicated to A detailed
discussion for research gaps and future directions, synthesizing
insights from each stage of the personalization process. Finally,
the paper concludes in Section VII.

II. TAXONOMY

Modeling personalized driving behavior is the foundation of
the personalization process, and personalized driving behaviors
can be organized using an integrated and cascading taxonomy,
as shown in Fig. 2. This multi-tiered approach begins with
categorizing behaviors into long-, mid-, and short-term from
the temporal scale perspective. Within the short-term behavior
section, we further divide the behavioral response stages dur-
ing driving into distinct stages based on the vehicle operation
pipeline, i.e., perception, cognition, and actuation. These stages
can be further detailed by classifying specific types of driver-
vehicle interactions. This layered and interconnected structure
effectively captures the full spectrum of personalized driving
behaviors, from overarching temporal patterns down to the
nuances of moment-to-moment interactions.

A. By Temporal Scale

The investigation of personalized driving behavior is com-
plex, and we approach it by segmenting it into three distinct
time scales: long, middle, and short-term. These scales each
possess distinctive characteristics and are intricately interlinked
with one another, influencing and being influenced in a dy-
namic manner. Long-term behaviors set a foundational context
that shapes mid-term behaviors, which in turn have a direct
impact on short-term actions and decisions. This creates a
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complex, interconnected web of driving behaviors across these
temporal scales, necessitating different modeling strategies
and focus.

Long-term: On this temporal scale, personalized driving be-
havior focuses on relatively stable aspects of the driver’s profile,
such as personality [20], [21], demographic information [22],
[23], and frequently visited locations (e.g., workplace and home)
that are used in activity-based modeling [24]. These features,
collected and profiled over a long duration, establish the foun-
dational layer for performing personalization, providing a con-
sistent reference point from which we can integrate and adapt
the more dynamic aspects of the driver’s profile. For example,
a driver’s travel behavioral preference for manual versus auto-
matic transmission, the willingness to engage in risk [25], and
the impact of regional geographic and socio-economic charac-
teristics on ride-hailing driver profiling [26]) would fall under
this category.

Mid-term: This represents the modeling of personalized driv-
ing behavior that, while exhibiting more changes, still maintain
relative stability. Compared to long-term behaviors, mid-term
behaviors typically span multiple trips or a single extended trip.
This scale takes into account a variety of factors that can be
influenced by time of day, specific events, or environmental
changes. A key component of this category is the analysis of
driving styles [2], [27], [28], [29], [30], embodying a blend of
persistent long-term habits and adaptable mid-term responses
to dynamic elements like traffic states and roadway geometry.
As representative driving patterns, car-following [31], [32], [33]
and lane-change behavior [34], [35], [36] at this level encompass
a driver’s general tendencies and preferences, and reveal how
the driver interacts with surroundings, providing insights into a
driver’s consideration of safety, comfort, and efficiency. Also,
driver mood state [37], [38] falls into the mid-term category,
as a driver’s emotional state can fluctuate based on specific
experiences or situations, but generally follows certain patterns.
Similarly, temporary driver physiological state [39], [40], like
drowsiness, has the same influence to driving pattern. Moreover,
drivers demonstrate distinct concerns regarding fuel/energy ef-
ficiency and exhibit corresponding behavioral adaptations when
operating different types of vehicles [41], especially for electric
or hybrid vehicles [42]. Situational circumstances should be
considered as well, and the behavior is influenced by factors
like weather, traffic conditions, vehicle conditions, passenger
conditions, and route elevations [43], [44], [45], [46], [47]. These
mid-term elements, when combined, offer valuable insights
into how drivers respond to evolving conditions and how these
responses shape their overall driving behavior.

Short-term: This temporal scale pertains to immediate be-
haviors and operations that change rapidly during the driving
process. Short-term behaviors are situational behaviors and are
directly influenced by mid-term behaviors. Compared to mid-
term behaviors, short-term behaviors are usually evaluated at
the level of a single trip or specific events. It encompasses the
whole behavioral response pipeline, including the driver’s per-
ception, cognition, and actuation, as elaborated in Section II-B.
Interactions with the vehicle’s control systems and immediate
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Fig. 2. Taxonomy of personalized driving behavior.

responses to external events are also categorized under short-
term behaviors.

B. By Behavioral-Response Stage

When modeling personalized driving behavior, it’s critical
to consider the entire behavioral response pipeline, which
involves the stages of perception, cognition, and actuation.
These stimulus-driven stages reflect the sequential process of
human interaction with the vehicle and driving environment,
and they have specific characteristics unique to individual
drivers.

Perception stage: This initial stage is all about how the driver
perceives the environment. As illustrated by the Drift Diffusion
Model (DDM) [48], initial sensory inputs, or “stimuli”, are
actively processed to accumulate evidence towards a decision
boundary. Perception is not merely a passive receipt of informa-
tion but actively influences the cognition (e.g., decision making)
from the outset. This stage sets the premise for all subsequent
steps, as the information perceived here will influence the cogni-
tive processing of that information and, ultimately, the physical
actuation in response.

Drivers may exhibit different perceptual behaviors to gather
information, and not every driver receives the same information
or integrates it in the same way while driving. The focus of a
driver’s gaze is another significant factor [49], [50]; some drivers
may focus mainly on the road ahead, while others frequently
check mirrors or allocate their attention to a secondary task [51]
(e.g., instrument panels). Other factors include the driver’s
awareness of the environment [52], [53], such as attention to
traffic signs, other vehicles, and pedestrians, and these often
involve distraction or drowsiness detection studies [54], [55],
[56], [57]. The perception stage also includes the study of
capability (affected by midterm behavior), such as vision acuity,
spatial awareness (distances, speeds, and angles), and sensory

responsiveness (visual, auditory, and tactile inputs), to perceive
the environment or access external signals.

Cognition stage: At this stage, the mental processing of per-
ceived information takes place. Drivers interpret what they see,
anticipate potential outcomes, and make decisions based on their
experience, understanding and judgement. Studies focusing on
this stage cover a variety of aspects. To name a few, drivers’
risk assessment [58], [59] might greatly influence how they
react to potential dangers on the road. Also, decision-making
studies [60], [61] evaluate how drivers respond under different
circumstances, noting differences between more aggressive or
cautious behaviors. On the other hand, intention prediction
studies [62], [63], [64], [65], [66], [67] anticipate a driver’s
next actions based on current behaviors, as a typical use case of
cognition process modeling. Additionally, studies on cognitive
processing, such as cognitive load assessment [68], [69], [70]
contribute further to understanding the cognitive demands on a
driver during various situations. Likewise, research into drivers’
emotional responses [38], [71] dives deep into how emotions
influence decision-making and overall driving behavior, further
enriching our understanding of the cognitive aspect of driving.
These aforementioned cognitive factors together shape the com-
prehensive profile of a driver’s behavior on the road.

The inherently abstract nature of these cognitive processes
necessitates indirect methods for their assessment. Recent
advancements in physiological measurements have offered
promising methodologies to bridge this gap. For instance, Luo
et al. [72] studied how personal comfort system affects the cog-
nition performance based on heart rates. Najafi et al. proposed
to use Electrodermal Activity (EDA) Skin Potential Response
(SPR), their Electrocardiogram (ECG), and their Electroen-
cephalogram (EEG) for driver attention assessment [73]. Govin-
darajan et.al. [74] adopted headband and camera to measure
EGG signals and thermal facial data, which are used for per-
sonalized reaction time prediction. By correlating physiological
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signals with driving behaviors, researchers can infer the underly-
ing cognitive and emotional processes for more personalized and
adaptive driving assistance systems that cater to the individual
cognitive profiles of drivers.

Actuation stage: The Actuation stage is the dynamic and ob-
servable component of the behavioral response in driving, where
the cognitive choices formed from perception are translated into
physical maneuvers. In this conclusive phase, the driver’s men-
tal activities—encompassing the assessment of environmental
conditions and cognitive judgments—are translated into direct
interactions with the vehicle’s controls.

As shown in Fig. 2, this phase serves not only as the execution
of a driver’s behavioral response process but also completes a
feedback loop via perception. It involves two primary response
types, and they are 1) immediate responses: these are the direct,
often reflexive actions taken in response to immediate and un-
expected driving situations. They represent the driver’s ability
to quickly process and act upon the information perceived,
illustrating the practical application of cognitive decisions in real
time, which includes quick adjustments to the steering, throttle,
and brake [75], [76]. 2) Maneuver execution: in contrast to the
reactive nature of immediate responses, maneuver execution
encompasses the strategic implementation of complex driving
maneuvers planned by the driver. This includes performing
overtaking [77], as well as the dynamic adaptation required for
car-following and lane-changing [78], [79], [80], [81].

Actuation is more situational compared to the mid-term driv-
ing pattern, characterized by higher intensity in reaction and
interaction. These situational behaviors are the main prediction
target of many literature because they are highly affected by
a driver’s characteristics of perception, and cognition under
various traffic conditions. As such, the Actuation Stage is not
only about action but is integral to a cyclical behavioral response
process that feeds back via perception, forming an iterative loop
that shapes and is shaped by the driver’s continuous interaction
with the surroundings. This loop is central to enhancing driving
safety and the development of personalized driving assistance
systems that can adapt to an individual’s driving style in real
time.

C. By Granularity

Granularity, within the context of personalized driving behav-
ior modeling, refers to the level of detail and individualization
applied when analyzing and modeling driving behavior. This
concept acknowledges that while drivers may share similar
patterns, each individual also possesses unique traits that merit
distinct consideration. Therefore, adopting both group-based
(coarse-grained) and individual-based (fine-grained) modeling
methods is a prudent approach to comprehensively capture the
range of driving behaviors.

Individual-based modeling (fine-grained) is the focus of this
review. It concentrates on tailoring behavioral predictions and
interventions to the specific traits and behaviors of individual
drivers. This level of granularity involves detailed data collection
and analysis for each driver, enabling highly customized and
accurate behavior models.
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Group-based modeling (coarse-grained) categorizes drivers
into clusters based on shared behavior patterns, such as driver
type clustering [64], [82] and classification [21], [83]. This
approach helps in the initial understanding and segmentation
of driver data, facilitating the identification of broad behavior
patterns and commonalities among different driver groups. It
serves as an effective strategy for segmenting driving behavior,
which can be refined for more detailed analysis.

Transitioning from coarse-grained to fine-grained modeling
involves not only increasing the number of driver clusters but
also deepening the analysis within each cluster. This refinement
enhances the model’s ability to differentiate between drivers on
a more granular level. As more detailed data are incorporated—
such as specific situational reactions, driving conditions, and
temporal behaviors—the clusters become increasingly refined.
This refined clustering approach allows the model to capture
unique driver traits and tendencies more accurately, thus mov-
ing the analysis from a broader group-based perspective to an
individual-focused one. Techniques such as incremental learn-
ing are employed to continuously update the model as new
databecomes available, particularly individual-specific data. For
instance, Zhao et al. [80] utilized an incremental learning method
to retrain their model based on human feedback, developing a
personalized adaptive cruise control system that better matches
each driver’s preference during each trip. Federated learning is
another effective technique. Once a group-based model is estab-
lished, it can be customized for individual drivers by continuing
to train locally on each driver’s data. Du et al. [84] implemented
aclustering-based personalized federated learning framework to
model lane change behavior, enabling the learning of individual
behaviors based on a general model.

This granularity spectrum, ranging from coarse-grained
group-based to fine-grained individual-based modeling, illus-
trates a flexible approach to personalizing driving behavior
analysis, adapting the level of detail to the specific needs of
the research or application.

D. Interactive Vs. Non-Interactive

Drivers engage in continuous interactions [85] with other
road users, and within the scope of this paper, we mainly
focus on vehicular interactions. These interactions, pivotal in
personalized driving behavior modeling, predominantly reside
within the cognition and actuation subsections of our discussion.
Interactive behaviors cover a driver’s dynamic interactions
with other vehicles, involving their predictive, decision-making,
and vehicle operation capabilities. Examples include adjusting
speed to both react to and influence the movements of other
vehicles [86], [87]. Conversely, non-interactive behaviors refer
to reactions with static or predictable elements, such as road
conditions, traffic signs, and traffic signals [88], [89], [90], [91].
Diving deeper, the study of personalized interaction patterns
seeks to understand the tendencies of individual drivers, focusing
on how they distinctly react to and influence other vehicles.

III. PERSONALIZED DATASET

The foundation of personalization in driving behavior lies in
the construction of a personalized dataset, which is both the
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TABLE I

PERSONALIZED DATASET SUMMARY

Data Category Collection Collection Typical Data Utilization
Methods Instruments
Vehicle Operational NDS, FOT, OBD II, IMU, Vehicle Speed, Throttle e Dynamics Insight: Provides comprehensive under-

and Contextual Data

Simulation (HuiL)

GNSS, On-board
Sensors (LiDAR,
Radar, Cameras)

position, Engine RPM,
Location, Surrounding
Objects Information

standing of vehicle operation behavior and driver in-
teraction with the control systems in various driving
scenarios.

* Environmental Contextualization: Captures essen-
tial data to evaluate the interaction of vehicle dynamics
with environmental and situational variables.

Driver Physiological
and Behavioral Data

NDS, FOT,
Simulation (Huil)

EEG, ECG,
In-Cabin Cameras,
Wearable Devices

Eye or Body
Movements, Heart Rate,
Facial Expressions,
Skin Conductance,
Gestures

* Behavioral Insight: Delivers key metrics on driver
states, such as attentiveness and emotional states,
crucial for assessing mental workload and predicting
potential driving distractions.

 Physiological Correlation: Enhances the modeling
of personalized driving behavior by correlating phys-
iological markers with cognitive and emotional driver
states.

Interviews,
Questionnaires

Demographic and
Subjective Evaluation
Data

Questionnaires,
User Feedback,
Driving Reports

Attitudes, Psychological
Characteristics,
Social-Economic and
Demographic
Information, Personal
Experiences

¢ Personalized Profiling: Aids in creating in-depth
driver profiles by gathering subjective data on indi-
vidual driver characteristics and preferences.

* Behavioral Explanation: Offers explanations for
specific driving behaviors by linking them to socio-
economic, demographic and psychological data points.

initial step and the cornerstone of the personalization process.
This dataset’s primary goal is to capture the unique driving
patterns and characteristics of each individual driver. A robust
and effective personalized dataset has three vital characteristics:

a) Individual identifiability: This aspect emphasizes the need
to distinguish and label the unique behavioral traits of each
driver, facilitating a truly personalized analysis.

b) Adequate volume: To effectively feed and optimize data-
intensive algorithms, the dataset must possess a substantial
volume of data. A rich dataset allows for a more comprehensive
analysis and understanding of varied driving behaviors, enhanc-
ing the accuracy and reliability of the resulting models.

c) Appropriate data type variety: It’s essential that the dataset
includes a diverse range of data types (e.g., driver data, vehicle
data, and driving environment data), tailored to capture the
various aspects of driving behavior. This variety ensures that
the dataset comprehensively addresses the specific nuances and
needs of different driving styles.

This section presents the data acquisition and processing, with
a special focus on categorizing data for driving behavior per-
sonalization, surveying available data sources, and outlining the
collection of customized datasets for particular study objectives,
as summarized in Table 1.

A. Data Categories for Driving Behavior Personalization

The potential data type for driving behavior personalization
includes:

a) Vehicle operational and contextual data: can be obtained
from onboard information systems, like OBD II (On-Board
Diagnostics 1), GNSS (Global Navigation Satellite System),
IMUs (Inertial Measurement Units), and vehicle sensors (e.g.,
front cameras, LiDAR, Radar, etc.). These systems together
provide insights into vehicle speed, throttle position, engine
RPM, location, acceleration, braking, cornering forces, and
surrounding environment information. This data helps to shed

light on a driver’s operational behavior and how the driver
interacts with others in various traffic conditions, enabling the
customization of driving assistance systems to better support the
driver’s needs [47], [64], [83], [92], [93], [94].

b) Driver physiological and behavioral data: can offer an
understanding of attentiveness, emotional state, mental work-
load, and potential distractions. This data can be collected by
in-cabin cameras and wearable devices like Electroencephalog-
raphy (EEG) and Electrocardiography (ECG). These tools mon-
itor various indicators, such as the driver’s eye movements,
body movements, facial expressions, gestures, heart rate, skin
conductance, and other physiological signals [68], [72], [73],
[74], [95], [96]. By correlating these physiological signals with
driving behaviors, researchers can infer the underlying cognitive
and emotional processes that dictate the driver’s responses.
This deeper understanding allows for the development of more
effective personalized and adaptive driving assistance systems
that can adjust interaction modes, prioritize information de-
livery, and manage alerts to accommodate the driver’s current
state.

c) Demographic and subjective evaluation data: can provide
insights into why certain driving behaviors manifest and what
drivers think or feel in certain situations. These data are essential
for building a comprehensive driver profile, which includes the
driver’s attitudes, psychological characteristics, situation aware-
ness levels, and self-identified driving styles. Such information
is typically gathered through questionnaires and interviews,
allowing researchers to personalize driving models based on the
driver’s background, personality, and self-identification, which
can greatly influence driving behavior and the effectiveness of
tailored driving interventions [20], [52], [71], [97], [98].

B. Personalized Real-World Data

Having discussed the various data types integral to model
personalized driving behavior, it’s crucial to consider the sources
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Fig.3. Real-world data from naturalistic driving studies and field operational
tests [100].

of these data. Two principal sources of real-world data, namely
the Naturalistic Driving Study (NDS) and Field Operational Test
(FOT) data, are indispensable in this context [99]. As depicted
in Fig. 3, while FOT data offers some experimental control,
NDS operates with considerably less or none, capturing genuine
behavioral dynamics in natural driving scenarios [100].

The FOTs typically involve a series of structured stages,
starting with the design of the test objectives. During the ex-
ecution phase, pilot testing is conducted to refine the systems
and procedures, followed by the main phase of data collection,
where specific vehicle technologies and driver behaviors are
monitored under predefined conditions. Post data collection, the
analysis phase focuses on evaluating the data against the test ob-
jectives, ensuring compliance with ethical standards. Similarly,
NDS employs an unobtrusive approach where data collection
equipment is installed in vehicles without influencing or altering
the driver’s normal behavior. This method allows for the capture
of authentic driving behavior under natural conditions. The data
gathered is then analyzed to understand how various driving
patterns correlate with different driving contexts.

1) NDS Data: There’s a growing recognition of the value of
NDS datasets. NDS employs advanced in-vehicle technologies
to discreetly record drivers’ behaviors during routine driving
scenarios. It allows researchers to observe and analyze drivers’
authentic reactions and decision-making patterns in real time,
offering insights into their adaptive strategies across varied
traffic and environmental conditions.

To facilitate personalization in NDS datasets, driver identi-
fiability is paramount. Several open-source NDS datasets have
been introduced to bolster studies on personalized driving be-
havior. These datasets not only capture authentic reactions and
behaviors across a myriad of driving contexts but also ensure
driver identifiability, fostering the evolution of more personal-
ized models. Notable examples include the 100-Car Naturalistic
Driving Study dataset [101], [102] and the Candrive study
dataset [103]. Both offer comprehensive data by non-intrusively
capturing vehicle states and driver maneuvers. These datasets
are obtained using the participant’s vehicle, ensuring familiarity,
and are equipped with cameras and sensors. While sensors track
vehicle states and the surrounding environment, cameras record
the facial expressions and reactions of the drivers throughout
their sessions. This setup not only captures drivers’ emotions
and responses but also facilitates data segmentation for each in-
dividual, paving the way for the creation of customized datasets
for every participant. Moreover, datasets like Brain4Cars [104],
Drive&Act [105], SHRP2 [106], UAH-DriveSet [107], and MIT
AVT [108] further expand the scope of available naturalistic
driving datasets.
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However, These datasets were primarily constructed for
generic or broader applications and might not fully cater to
the intricacies required for personalization. While they offer
significant advantages, such as capturing a wide range of driving
contexts and ensuring driver identifiability, they often fall short
in meeting the requirements for data volume and variety of data
types necessary for comprehensive personalization. Specifically,
these datasets are collected from a restricted set of drivers and
certain scenarios, making it challenging to extrapolate findings
to a broader population, traffic conditions, and different person-
alization objectives. Additionally, these open-source naturalistic
datasets focus more on collecting short-term actuation driving
behavior but ignore the data required for personalizing other
stages of driving behavior, compelling researchers to create their
customized datasets for different research purposes. Therefore,
in the context of NDS, many researchers create customized
datasets based on personalized objectives, in addition to the
dataset of vehicle operation. For instance, Hu et al. [3] compiled
in-vehicle temperature, humidity, car speed, pressure, and win-
dow state to build a personalized driver climate control behavior
recognition model. Banerjee et al. [49] extracted eye gazing
data to model the driver’s perception behavior. For modeling
the driver workload during each trip, Xie et al. [69] collected
ECG, heart (HR) heart rate variability (HRV), breath rate (BR),
galvanic skin response (GSR), vehicle speed, and acceleration.

2) FOT Data: Conversely, FOT is designed to evaluate spe-
cific vehicle functions in their usual operational environments
and traffic conditions. Structured to identify the real-world
impacts and benefits of these functions, the data from FOT is
invaluable for enhancing performance and safety attributes.

Summarizing different types of FOTs, Barnard et al. [109],
[110] presented a systematic and scientific procedure for imple-
menting an FOT. They categorized these tests into three main
domains: user-centered, vehicle-centered, and context-centered
evaluations. Using the FOT dataset created by the Dutch Min-
istry of Transports [111], Viti et al. [112] investigated how
the adaptive cruise control system influences driving behaviors.
Instead of using existing FOT data, Lyu et al. [113] carried
out a small-scale (44 participants) naturalistic-FOT (N-FOT)
to collect naturalistic driving data for establishing a driving
style recognition framework. Taking a step further to studying
personalized behavior, Liao etal. [66], [114] builtan FOT testbed
and used the collected data to train and validate a personalized
lane-change prediction model.

Many extensive N-FOT projects, along with the datasets they
generate, are utilized for algorithm development, as highlighted
in [115], [116]. While these datasets also serve as proof of con-
cept, their primary role is in performance evaluation. The level
of experimental control directly corresponds to the suitability of
the dataset for algorithmic assessment, which will be further dis-
cussed in Section V-B2. Yet, the domain of personalized driving
behavior through FOT data still offers ample opportunities for
further research.

C. Human-in-The-Loop (Huil) Simulation Dataset

Real-world driving datasets are often collected in ever-
changing environments influenced by various temporal factors
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(e.g., traffic conditions, vehicles nearby, weather, time of the
day), leading to inconsistencies. This variability makes it diffi-
cult to discern if these temporal factors directly impact a driver’s
behavior or if they’re merely coincidental. A comprehensive
understanding truly necessitates longitudinal studies to capture
the recurrent pattern over extended periods. Driving simula-
tions, in contrast to real-world datasets, provide a controlled
environment for consistent data collection. Human-in-the-loop
(HuiL) driving simulations in an immersive simulation platform
(e.g., NADS-1 driving simulator [117]) present an opportunity
to mimic real-world scenarios while ensuring that the conditions
remain standardized, facilitating more precise analysis and com-
parisons across different drivers and driving behaviors.

Just as in real-world datasets, driver identifiability remains a
fundamental prerequisite for personalized simulation datasets.
Doubek et al. [118] introduced an open-source Human-in-the-
Loop (HuiL) driving simulation dataset to examine automation-
to-manual takeover behavior, capturing data from 25 drivers.
Similarly, a multi-HuiLL simulation was carried out and dataset
was published [119], [120], aimed at exploring interactions be-
tween two human drivers across diverse traffic scenarios. Simu-
lation datasets tailored to specific research needs are increasingly
prevalent, primarily due to their ease of collection compared
to real-world datasets. As an illustration, researchers [2], [36],
[76], [121] utilized HuiL driving simulations to collect targeted
personalized driving behavior data. This approach allows re-
searchers to deliberately replicate specific traffic scenarios or
vehicular interactions, facilitating a more precise identification
of primary behavioral indicators and reducing the impact of
incidental factors. Moreover, HuiL. allows for the exploration of
rare or extreme scenarios, granting insights into driver reactions
in situations seldom or never seen in reality.

However, it’s important to acknowledge the limitations of
Huil datasets. One significant drawback is the potential for
domain shift, where the simulated environment does not per-
fectly replicate real-world conditions, leading to discrepancies
in driving behavior. Additionally, the psychological and phys-
iological responses elicited in simulations might differ from
real-life situations, leading to behavioral discrepancies. These
factors highlight the importance of complementing HuiL stud-
ies with real-world data for a more comprehensive validation.
Further exploration on developing HuiL driving simulations and
addressing these challenges is discussed in Section V-B1.

D. Personalized Interaction Dataset

Modeling personalized interaction behavior requires under-
standing how a driver reacts to and influences other road users.
Consequently, it necessitates data from the perspectives of all
involved road users, which is crucial in understanding driv-
ing behavior in traffic or group dynamics. Currently, however,
there is a significant gap due to the absence of interaction data
involving multiple vehicles. The aforementioned datasets are
predominantly generated from the perspective of the ego vehicle
and its driver.

The development of connected vehicles (CVs) has made
data sharing more accessible. Specifically, the data collected
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from CVs can include aspects such as the driver’s profile, their
current state, and intricate details of their actuation maneuvers.
Based on shared data of two connected vehicles, Liao et al. [6]
discovered personalized interaction patterns exhibited by ag-
gressive and cautious drivers in a ramp merging area. Their
study illustrates the different strategies adopted by these two
drivers when they attempt to influence or react to the maneuvers
of other vehicles in conflict situations. While this rich infor-
mation enables collaborative analyses across multiple vehicles,
the process still faces challenges. Factors like communication
delays [114], communication range, and signal blockage [122]
hamper data synchronization and sensor fusion, thereby posing
constraints on the generation of datasets utilizing CVs. There-
fore, HuiLL driving stimulation is still the main tool to collect
driving for multiple drivers. Zhao et al. [121], [123] established
a multi-driver co-simulation platform to study personalized
interaction behaviors. This platform integrates SUMO (a traf-
fic simulator) and Unity (a game engine simulator), equipped
with two driving simulation kits with steering wheels and ped-
als. Supported by AWS service, it can also simulate vehicle-
to-cloud communication, in addition to vehicle-to-vehicle
communication.

E. Data Analysis and Preprocessing

In the quest for a robust personalized dataset, the primary
challenge often lies not just in collecting ample data, but in en-
suring its quality, relevance, and diversity to accurately represent
the individual driver’s behavior across varying scenarios. This
stage involves processing and understanding the acquired data.
Analysis techniques such as statistical methods, data mining, or
machine learning can be used to extract meaningful information
about driving habits, decision-making processes, and reactions
to different situations. It also involves identifying important fea-
tures that significantly impact driving behavior and separating
the noise or less relevant information. Thus, data analysis and
preprocessing are usually conducted in parallel.

Datanoise removal can be accomplished using low-pass filters
such as the median filter, wavelet filter, and Kalman filter, as
well as the moving average filter [14]. Following noise removal,
an integral preprocessing step is segmentation. In the context
of trajectory data, segmentation is typically based on events,
actions, or defined time intervals, and these data can be labeled
manually or through automated labeling techniques [124]. For
image and video data, distinguishing between the foreground
and background is particularly crucial.

Data analysis helps understand the data, and hence researcher
can decide on approaches for personalization. Besides the de-
scriptive statistics analysis (e.g., measuring the data distribu-
tion), analyzing feature importance is a usual practice, and
some popular approaches include correlation analysis [125],
permutation feature importance (PFI) Analysis [126], principal
component analysis (PCA) [127], etc. In addressing dataset
limitations, researchers often engage in data balancing and aug-
mentation [128], [129], [130]. Besides data processing, transfer
learning (TL) [69], [76] is adopted to overcome the data con-
straint.
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IV. APPROACHES TO PERSONALIZATION IN DRIVING BEHAVIOR

Having established the vital role and characteristics of per-
sonalized datasets, we now shift our focus towards the method-
ologies. Leveraging the rich insights derived from personalized
data, we aim to create models that precisely mirror individual
driving behaviors, a process denoted as model personalization.

In this section, we will explore approaches researchers em-
ploy to characterize personalized driving behavior, discuss the
potential benefits of personalized behavior modeling in the
context of driving, and review the key algorithms that effectively
meet these objectives. We will also evaluate the advantages and
disadvantages of these algorithms, as summarized in Table II.

A. Personalizing the Driver Model

This approach is based on fitting the parameters of a prede-
fined model for the characteristics of a specific driver. This type
of parametric model can be explainable cost functions, neural
networks, probabilistic models, and regression models.

Cost function is widely used to illustrate the preference of
a driver. Inverse reinforcement learning (IRL), as one type of
imitation learning, is an effective method to recover the cost
function given the driving demonstration. Some studies [66],
[133] used cost functions to describe the personalized lane
change preference of a driver and adopted IRL to recover the
weights of the cost function based on the driver’s historical
driving trajectories. Since drivers adjust their car-following gaps
at different speeds, Zhao et al. [32] modeled the personalized
car-following behavior with a cost function in speed-gap space
using IRL. Also, based on IRL, Bao et al. [131] used a personal-
ized cost function to depict how a driver perceives risk in a lane
change, as the core of a subjective risk model, which is then
integrated into a controller to generate a user’s preferred lane
change maneuvers. Along the same lines, based on end-to-end
imitation learning, Tian et al. [132] personalized the parameters
for the cost function of the planning and control module, using
limited historical samples.

Personalized neural networks, specifically trained for individ-
ual drivers, have proven to outperform general networks. Lever-
aging the capability of neural networks for reusability, Dang
et al. [136] employed a pre-trained long short-term memory
(LSTM) network to a new dataset as a personalized network
to the time-to-lane-change of specific drivers. The study in [49]
demonstrated enhanced accuracy in driver distraction detection
using a personalized encoder-decoder module. The individu-
alized neural networks developed for each driver, as per [37],
showed superior performance in recognizing driver emotions
when compared to a general model. Furthermore, Abdelraouf
et al. [7] introduced a personalized approach for vehicle tra-
jectory prediction using temporal graph neural networks. Com-
bining Graph Convolution Network (GCN) and LSTM, their
model, pre-trained on large datasets and fine-tuned for individual
driver, significantly improved prediction accuracy, particularly
for longer horizons.

Personalized probabilistic models are also efficient tools,
such as Hidden Markov Model (HMM) and Generalized Gaus-
sian Mixture Models (GMM). Lefevre et al. [137] adopted a
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personalized HMM to build a personalized lane-keeping assis-
tance. The personalized HMM captures how a driver changes
his or her decision over left/right lane change and lane keeping,
revealing the transition probabilities between each action. Wang
et al. [138] demonstrated a personalized HMM-GMM model
that can capture better car-following behavior than traditional
GMM-based models.

Similarly, personalized regression model. To search for a
personalized navigation route, a personalized fuel consumption
prediction model was proposed using a multivariate nonlinear
regression model (MNR) [47], whose parameters were estimated
based on a driver’s driving style. Similarly, for developing a
personalized route searching method, Chen et al. [82] initialized
the weight vector of a graph-based road network as the user
preference model, based on adriver’s classified driving style, and
then adjusted the weights once the driving behavior changed.

Training personalized models for each driver presents sig-
nificant computational challenges, primarily due to the sheer
number of individual models required when dealing with a large
driver population. Each model necessitates separate training,
validation, and testing processes, escalating the computational
workload exponentially with the increase in the number of
drivers. Despite their computational intensity, these personalized
models have effectively bridged the gap between generic pre-
dictions and individualized insights. To mitigate computational
demands, researchers [3], [135], [139], suggested categorizing
driving styles and tailoring networks accordingly. This strategy
balances the need for detailed personalization with computa-
tional efficiency, offering a practical solution to the challenges
posed by large-scale model training.

The effectiveness of personalized models largely depends
on the design and robustness of the underlying base model.
A well-constructed base model is pivotal for yielding accurate
and detailed predictions tailored to individual drivers. However,
customizing these models for each driver is resource-intensive,
requiring substantial computational resources for fine-tuning. To
address challenges associated with limited personalized driving
data, transfer learning (TL) has emerged as a popular tool. This
technique involves pre-training a model on a general dataset
and subsequently fine-tuning it with individual-specific data.
Abdelraouf et al. [7] effectively utilized this approach, demon-
strating its efficiency in personalization. Similarly, Li et al. [76]
employed an importance-weight-based TL approach to adapt the
base model for new drivers using a relatively small amount of
personalized data, thus streamlining the adaptation process.

B. Personalizing the Driver Attributes

This approach learns the attributes of the driver to build a
driver profile, and these attributes can be modeled independently
and jointly, with researchers opting for a specific approach based
on their research focus.

The process of modeling independent attributes is succinct
and direct, encapsulating distinct characteristics like subjective
risk perception [140], aggression levels, and the probability
distribution of accelerations [141]. These isolated attributes
are studied to provide insights into specific aspects of driving
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TABLE II

SUMMARY OF APPROACHES TO DRIVING BEHAVIOR PERSONALIZATION

Approaches Output Algorithms Pros Cons
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Models Least-Squares
Probabilistic Classifier
[76]
Reeression Gradient Boosting
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tAe Abrlver Probability by personalized feedback and improvement | on various attributes, while precise and
tributes Power-Law Function suggestions. accurate data can be challenging to obtain
Estimation [23]  Clarity: Provides clear, focused insights | and quantify.
into particular aspects of driving behavior,
Parameters of Personality incorporating various aspects of behavior
hac and preference.
Joint by LSTM-based MTL{\ p
. network [21], Tradeoff
Attributes
between Presences by
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Labeling [64] mented in downstream modules. sights, not capturing the detailed behaviors
Drivers SVM [21. [371. [68 « Efficient: Efficient in identifying patterns | of individual drivers.
[' ] [371, ‘[‘, 3] and trends in driving data for generalized | * Static Labels: Lack flexibility to adapt
Tree-Based Classifier interventions. to evolving driving behavior.
Driver Clas- [64], [94], [140], LSTM
sification [21], PNN [83], Fuzzy
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Semi-Supervised
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gy Driving her: ¢ . lized feedback tation can be time-consuming.
Behaviors Imitation Learning [152] time, personalized feedback.
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ssessment o o from the driver’s perspective that are not | qualitative observations into actionable
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driving behaviors.
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behavior without considering their interaction or combined im-
pact on overall driving style. He et al. [23] developed a person-
alized insurance pricing strategy based on the quantification of a
driver’s risk from trajectories. This method characterized drivers
using their risk probabilities, mileage estimation, and their de-
mographic information. Using aggressiveness index measured
in energy spectral density (ESD) analysis was proposed by [28]
to quantitatively evaluate driving style.

Analyzing the distribution of an independent attribute is
straight straightforward approach to characterizing a driver. Kim
et al. [142] personalized the acceleration behavior of an electric
vehicle according to the driver’s characteristics and quantified
the performance by comparing each driver’s driving data using
Kernel Density Estimation. The analysis was conducted on five
drivers to show how the kernel density function of acceleration of
each driver differs from that of others. Likewise, Baek et al. [94]
characterized a driver using a statistical model based on his or
her time headway distribution and pedal control patterns. This
approach allowed the model to adapt to the driver’s changing
preferences over time.

While a single, well-defined personal attribute can offer an
intuitive depiction of a driver, it may fall short of comprehen-
sively capturing the multifaceted nature of driving behaviors.
Addressing this, researchers have gravitated towards multi-
attribute models that yield more nuanced and holistic driver
profiles. Das et al. [21] designed an LSTM-based Multi-Task
Learning with Attention (MTLA) network to capture a driver’s
personality traits implicitly, where the attention mechanism acts
as a feature selector and assigns weights on predefined traits for
each individual. Similarly, Butakov et al. [91] examined drivers’
willingness to balance time of arrival, fuel economy, comfort,
and safety. This multi-attribute approach facilitated the reso-
lution of optimization problems, helping drivers in navigating
through signalized intersections.

C. Driver Labeling

This approach aims to identify and categorize drivers based
on factors that affect their driving behaviors, e.g., sudden accel-
eration, hard braking, and other risky maneuvers. Meanwhile,
explainable parameters (i.e., weights in the cost function) in
Section IV-A and driver attributes in Section I'V-B may also be
used as the indexes for driver labeling. Driver clustering and
classification are two main branches of driver labeling. While
primarily designed for coarse-grained, group-based modeling,
driver labeling also supports fine-tuning for individual-specific
models as detailed in the taxonomy (Section II).

Driver clustering groups drivers based on similarities in
their driving behavior without any pre-existing classes or cat-
egories. It is an efficient way to discover hidden patterns in the
driver dataset through unsupervised methods. Commonly im-
plemented algorithms for driver clustering include K-Means [2],
[82], [83], [143], Gaussian Mixture Model (GMM) [76], [144],
[145], Fuzzy C-Means [36], [68], and Polynomial Regression
Mixture (PRM) [64]. A notable application of this approach
is found in the work of Chen et al. [82], who developed
a personalized path recommendation system for autonomous
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vehicles. In their system, driver clustering plays a crucial role
in the initial phase by generating a preference weight vector,
which lays the groundwork for tailoring path recommendations
to individual driver preferences. The unsupervised nature of
driver clustering is advantageous, as it minimizes the need for
prior assumptions and naturally uncovers behavioral patterns
within the data. This method not only facilitates effective feature
extraction but also enriches data interpretation. By categorizing
drivers into distinct groups, it adds layers of information, such
as specific driver labels, which are essential for sophisticated
downstream analysis and processing.

On the other hand, driver classification involves categorizing
drivers into predefined classes based on their driving behavior for
providing personalized services. Popular algorithms for driver
classification include support vector machine (SVM) [2], [37],
[68], tree-based classifier [64], [94], [140], LSTM time series
classifier [21], probabilistic neural network (PNN) [83], and
fuzzy inference classifier [71]. Typically employing supervised
or semi-supervised learning approaches, driver classification
relies on predefined driver types based on expert knowledge,
facilitating easier implementation in real-world scenarios. The
real-time driver classification system proposed by Bhumika
et al. [21] is a notable example showing how the classification
contributes to personalzation. Their system classifies drivers’
behaviors into categories like ‘normal’, ’drowsy’, or ’aggres-
sive’, and accordingly provides tailored recommendations for
accepting or rejecting trip requests. Driver classification plays
a key role in enhancing road safety and driver well-being by
ensuring that driving assistance systems are closely aligned with
the unique behaviors and needs of each driver.

Additionally, a key challenge in driver classification is the
scarcity of true labels, which is crucial for model accuracy
but often unavailable in real-world data due to the subjective
interpretation of driving behaviors. For example, speeding could
be seen either as an emergency action or reckless driving depend-
ing on the context. To combat this, researchers have turned to
semi-supervised learning techniques to augment model accuracy
using both labeled and unlabeled data. For instance, Guzman
and Loui [146] applied a federated semi-supervised approach,
initializing models with features extracted from unlabeled data,
then refining them with labeled data. Chen et al. [147] employed
a semi-supervised twin projection vector machine that enhances
classification by using labeled data to establish the model’s
framework while utilizing unlabeled data to refine and validate
its predictions. Similarly, Cheng et al. [148] implemented a
teacher-student semi-supervised model for risky driving de-
tection that uses a limited amount of labeled data to guide
learning while extensively employing unlabeled data for model
generalization. This approach enables the teacher to generate
pseudo-labels from the unlabeled data, which are then used by
the student for training, thus enhancing dataset size and detection
accuracy without extensive manual labeling.

The driver labeling approach is popular due to its simplicity
in categorizing and comparing different drivers. It can be im-
plemented in both offline (to predict behaviors prior to driving)
and online (to adapt recommendations in real time based on
the driver’s current state) manners. However, this method may
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sometimes oversimplify complex driving behaviors by fitting
them into a limited number of categories.

D. Other Approaches

1) Personalized Driving Policy: Considering its ability to
adapt to adriver’s behavior over time, manage complex decision-
making tasks, and adjust its actions based on different envi-
ronmental states, personalized reinforcement learning (RL) is
employed to create a highly responsive and personalized driving
behavior model. Considering the driving aggressiveness and
riskiness of each driver, researchers [149] designed an RL-
based personalized driving system (i.e., vehicle controller) to
recommend driving actions to the driver. Leveraging smartphone
sensor data, Vlachogiannis et al. [150] utilized RL to develop
a personalized driving behavior model that adapts to individual
driving patterns and environmental states. The RL-based sys-
tem analyzed critical driving metrics like aggressiveness and
speeding to formulate personalized driving policies, which are
delivered through a vehicle controller system, and recommended
self-improvement strategies to drivers. Likewise, Uvarov and
Ponomarev [151] presented an RL-based intervention strategy
that trained a personalized policy to maintain the state (e.g.,
alertness) of a driver. Besides RL, generative adversarial imita-
tion learning (GAIL) is getting famous for learning the complex
driving policy of human driver [152], and it can be extended
to discover the interaction policy between to multiple agents.
Still, the limitations of these policy learning approaches cannot
be neglected. It may require a large amount of data and com-
putational resources to train the model effectively. The learning
process can be slow and may require numerous iterations to
converge.

2) Personalization by Qualitative Assessment: Besides the
aforementioned objective behavior modeling approaches, in-
corporating qualitative assessment has emerged as a valuable
strategy due to its explainability of driving behavior and its
capacity to capture experience and preference from the driver’s
perspective. These qualitative assessment can be implemented
by preference questionnaire [20], [44], psychometric tests [153],
driver feedback [46], [154], and interviews [155].

Still, these intuitive and linguistic qualitative assessments
require further quantification before they can be integrated
into modeling frameworks. Consequently, rule-based methods
have gained attention for effectively incorporating subjective
judgments, often dictating the creation of rules or the formu-
lation of scoring metrics [12], [20], [27], [156]. Within rule-
based approaches, fuzzy logic-based methods have emerged as
significant tools, as illustrated in works like [59] and [157].
These methods are especially adept at quantifying ambiguous
linguistic concepts, offering a precise interpretation of subjective
expressions, such as discerning the subjective boundaries of "too
close’ in car following scenarios. However, these methods have
their limitations, as they may introduce biases into the research
and present challenges in achieving broad generalization. Typ-
ically, they are employed to complement objective methods,
offering additional perspectives and enriching the analytical
narrative.
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V. MODEL VALIDATION

The model validation process assesses the model’s perfor-
mance based on a set of benchmarks and indexes, measuring
the model’s accuracy, effectiveness, and generalizability. This
step ensures the reliability and robustness of the model before
deployment, enabling developers to observe its performance
in real-world scenarios, pinpoint unexpected challenges, and
fine-tune it as needed.

A. Evaluation Stages

Similar to the validation of other personalized systems [158],
the personalized driving behavior model can be evaluated
through three sequential phases: Offline Playback, Driving Sim-
ulators, and Field Experiments. In the Offline Playback, the
model takes in recorded data or uses an independent dataset
distinct from the one used for model development to gauge its
fidelity to real-world driving behavior. Driving Simulation are
instrumental in assessing the model’s performance against other
benchmarks. The final phase, Field Experiments, necessitates
testing the model in genuine traffic conditions. Progressing from
a proof-of-concept phase to application-oriented studies, the
current research landscape shows limited work that traverses
all these stages. The majority focus primarily on the first phase,
aiming to demonstrate the efficacy of their personalization al-
gorithms.

Given that driving personalization models often deal with time
series data, the resulting data sequences can be termed as ‘tra-
jectories.” In personalized driving, these trajectories encapsulate
a series of actions or states over time, uniquely characterizing
a driver’s behavior patterns, ranging from pedal behavior and
car-following distances to route selections. Additionally, driver
labeling typically serves as an intermediary step in modeling.
These models aim to categorize drivers based on their unique
driving patterns and then feed into a trajectory-level person-
alization. Therefore, these clustering and classification models
often adopt trajectory similarity measures for evaluation. Some
studies with the primary focus on driver labeling compare se-
lected features between driver classes, employing metrics such
as confusion metrics for performance evaluation. For instance,
Bhumika et al. [21] used Receiver Operating Characteristic
(ROC) curves and F-scores to predict various driving behaviors,
while Zahraoui et al. [143] applied False Discovery Rate (FDR)
and Rate of Change (RoC) to assess the effectiveness of clusters
formed from training and test trip data.

For validating the similarity of trajectories, metrics like Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), or
Root Mean Square Percentage Error (RMSPE) are frequently
used [5], [31], [32]. Such metrics are apt for comparing trajec-
tories with clear start and end points. Specifically, MSE offers
a simple yet effective computation, RMSE ensures consistent
unit measurements, and RMSPE ensures the metric remains
insensitive to data scale. However, complexities arise with varied
data lengths, different start and end times, or noise. Hence,
alternative validation metrics have been explored. For instance,
Wang et al. [31] also employed the Log Predictive-Density
error (LPD) which considers the entire prediction distribution,
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penalizing overconfident predictions more than acknowledged
poor predictions. On a similar note, Toohey et al. [159] introduce
and compare four trajectory similarity measures: Longest Com-
mon Subsequence (LCSS), Fréchet Distance, Dynamic Time
Warping (DTW), and Edit Distance. LCSS is efficient against
noise and outliers but can be sensitive to minuscule trajectory
alterations and might not be suitable for varied trajectory lengths.
Fréchet Distance is robust against noise and manages differ-
ent trajectory lengths but can be computationally intensive for
larger datasets. DTW is appropriate for varied trajectory lengths
and time distortions but can be noise-sensitive and resource-
intensive. Edit Distance is effective for diverse trajectory lengths
and time distortions and is scalable for larger datasets but may be
noise-sensitive. Expanding on the LCSS metric, Huang et al. [35]
proposed a similarity function (SF) to compare two trajectories.
Beyond trajectory comparisons, contrasting the distribution of
key indices from model-generated data is also prevalent. For
instance, Baek et al. [94] validated a personalized speed planning
algorithm using Time Headway (THW) as an index and used
Kolmogorov-Smirnov (K-S) distance and Kullback-Leibler (K-
L) divergence to measure the resemblance between the driv-
ing styles of their algorithm and human drivers. Also, Wang
et al. [138] compared the observed frequency of variables in the
collected datasets with the expected frequency of samples from
the learned model by the goodness-of-fit (GoF) statistic value.

While offline playback offers clarity, critics argue that the
abstract nature of personalization might not be fully reflected by
mere time series or distribution matches. Overemphasis could
lead to overfitting. Therefore, real-time validations are essential,
enabling instantaneous driver feedback on new systems as a
representation of personalization performance. Despite the ris-
ing use of driving simulators and Human-in-the-loop simulators
for the design and validation of autonomous vehicle systems,
leveraging real-time driver feedback for validating personaliza-
tion remains relatively uncharted. An exception is the work
of Zhao et al. [32], [80], [81], who, in their validation of a
personalized Adaptive Cruise Control (ACC) system, focused on
driver interventions. They introduced metrics like the Percentage
of Interruption (Pol) which denotes the fraction of time the driver
intervenes with the acceleration or brake pedals, and the Number
of Interruption-per-Minute (NIM), indicating the frequency of
such interventions.

Beyond measures of trajectory similarity and real-time feed-
back, questionnaires emerge as an instrumental approach to
validate personalized driving behavior. They enable a direct cap-
ture of drivers’ subjective evaluations, adding depth to objective
metrics. For example, Panou et al. [10] used multi-phase trials
to assess a personalized collision avoidance system (P-CAS)
by measuring driver reaction times. After the trials, participants
completed questionnaires that focused on their opinions about
different warning settings. Similarly, Amado et al. [160] utilized
questionnaires but uniquely incorporated an expert observer.
This expert compared drivers’ self-assessments against an
objective evaluation, aiming for a balanced understanding of
the evaluated skills and performances.

In the quest to quantify a driver’s satisfaction and trust in per-
sonalized systems, researchers have looked beyond just indirect
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metrics. A growing trend is to incorporate physiological sensors
to measure a driver’s bodily responses during interactions with
these systems. For instance, Nacpil et al. [161] elaborated on
how biosignals, obtained via tools like smartwatch sensors for
electrocardiography (ECG) and headsets for electroencephalog-
raphy (EEG), can be harnessed. Originally intended for clinical
applications, like EEG for diagnosing epilepsy or discerning
emotions, these tools are now being repurposed. Furthermore,
methodologies such as eye tracking, impedance cardiography
(ICG), and photoplethysmography (PPG) are also employed,
enriching the range of data available to analyze a driver’s inter-
action with the personalized system.

In contrast to driving simulators, field experiments offer en-
hanced validation by reflecting real-world driving conditions.
However, they encounter issues such as safety concerns, regula-
tory constraints, and the complexities of system design, which
can limit the extent of their validation. Still, some researchers
choose on-road experiments for direct validation. For example,
Panou et al. [10] used multi-phase trials to assess a personal-
ized collision avoidance system (P-CAS) by measuring driver
reaction times. After the trials, participants completed question-
naires that focused on their opinions about different warning
settings. Similarly, Amado et al. [160] utilized questionnaires
but uniquely incorporated an expert observer. This expert com-
pared drivers’ self-assessments against an objective evaluation,
aiming for a balanced understanding of the evaluated skills and
performances.

B. Validation Tools

The aforementioned three phases for model evaluation phases
mainly rely on human-in-the-loop (HuiL) driving simulators
and field experiment testbeds. Developing these tools becomes
essential in validating the model, ensuring that it not only meets
the designated benchmarks but is also robust and reliable in
real-world applications.

1) Simulation Platform: Evaluation of HuiL driving simula-
tor demands a high standard for vehicle model, user interface,
and traffic environment. Much research has been carried out
to construct open-platform game engine-based simulators, such
as NVIDIA DRIVE Sim [162] based on Omniverse [163],
CARLA [164] based on Unreal Engine 4 (UE4) [165] and
SVL [166] based on Unity [167]. These simulators are equipped
with high-fidelity physical engines, sophisticated UI designs,
and adaptable road environments that incorporate various
weather and road conditions, facilitating comprehensive au-
tonomous driving simulations. Additionally, they offer extensive
customization options for onboard sensors, including radar,
LiDAR, camera, and GPS, ensuring a versatile and realistic sim-
ulation environment. While game-engine simulators are adept at
providing intricate simulations for individual vehicles, they face
challenges in terms of the computational load and in effectively
replicating complex, dynamic traffic environments. In contrast,
tools like PTV VISSIM [168], a commercial microscopic traffic
simulation platform, as well as SUMO [169], an open-source
alternative, excel in creating realistic traffic environments. How-
ever, these microscopic traffic simulators ignore the complex
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Fig. 4. Multi-driver co-simulation platform (adapted from [121], [123]).
interaction between drivers and may not be good at simulating
individual vehicles. Therefore, fusing the game engine-based
simulator and traffic simulator [170], [171] becomes the solu-
tion to provide a simulation platform for personalized driving
behavior evaluation.

A multi-human-in-the-loop (MHuiL) platform, developed by
Zhao et al. [121], [123], seamlessly integrates the features
of Unity and SUMO, enhanced by the computing power and
personalized data storage facilitated by Amazon Web Services
(AWS). This platform is designed for driving behavior data
collection, algorithm development, and model evaluation. As
shown in Fig. 4, the platform is equipped with two sets of driving
cockpits, enabling two drivers to simultaneously participate
in a single simulation, marking a significant advancement in
interactive behavior modeling.

This MHuiL platform stands out in driving behavior model
evaluation, primarily due to its high-fidelity driving environ-
ment, building on a replication of a real-world on/off-ramp
scenario in Riverside, California. Also, for a fair evaluation, its
scenario replay feature ensures identical environmental settings
for comprehensive analyses. This intricate simulation is made
possible and robust by the Edge-Gateway, a pivotal element
that bridges the integration and synchronization of data and
functionalities between Unity, SUMO, and AWS. It ensures
not only seamless interoperability within the platform but also
extends compatibility, facilitating the integration of other simu-
lators, software, and real-world end devices for a comprehensive
simulation experience.

Besides model evaluation, this tool enables the personalized
dataset collection for each driver at a low cost and addresses the
long tail problem by replicating rare scenarios. It underscores
the platform’s adaptability in data collection, enhancing the
dataset’s diversity. Moreover, the multi-player setup amplifies
the focus on interaction behavior, capturing nuanced decisions
and reactions from both drivers’ perspectives. This rich dataset
is further enriched by AWS’s real-time support for services
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like trajectory prediction, driving scoring, and fuel consumption
analysis, facilitating deeper, more insightful analyses.

2) Real-World Testbed: While HuilL simulations are in-
valuable for initial testing and iterations, the complexity of
real-world conditions necessitates comprehensive evaluations
through real-world test beds. These testbeds evaluate the model’s
adaptability and performance under practical challenges such
as communication delays, signal loss, sensor accuracy, and
computational limits, offering a thorough assessment beyond
the controlled environments of simulations. However, con-
structing a large-scale real-world testbed (e.g., Mcity [172]) is
both time-intensive and resource-heavy. As stated in [173], a
naturalistic-FOT (N-FOT) experiment “cannot be conducted for
less than $10,000,000”, and hence researchers search for more
cost-effective alternatives like scenario-based testbeds and mini-
cities [174], [175], [176], which offer a practical environment
for proof-of-concept development and algorithm evaluation.

To study personalized driving behavior (model development
and evaluation), a vehicle-edge-cloud digital twin testbed was
built by Liao et al. [66]. This real-world testbed involves three
passenger vehicles, an edge server, and AWS, as presented in
Fig. 5, which was used to collect a personalized dataset and
evaluate the performance of the proposed personalized lane
change behavior prediction system.

The architecture of this testbed maximizes the computational
prowess of the cloud server. It crafts aunique digital twin for each
driver, extrapolated from their personalized driving model. This
facilitates real-time simulations and analyses within a virtual
environment and can connected to the simulation platform. With
AWS’s data storage and computational power, each driver’s
digital twin is dynamic, evolving, and adapting through the
continuous intake of real-world driving data.

The integration of an Edge-Gateway on the edge server miti-
gates the challenge of communication latency between the cloud
and vehicles, ensuring seamless data exchange and real-time
service delivery to vehicles. The portability of this testbed,
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necessitating only a tablet and GPS unit per vehicle, enhances
its applicability. It can be effortlessly deployed in any area with
signal coverage and is adaptable to various scenarios. Further,
the model evaluation is enhanced by the edge server’s capability
to replicate specific scenarios and direct each vehicle to predeter-
mined locations at targeted speeds. This level of control ensures
an environment of consistency, enabling accurate assessment
and comparison of model performances under identical condi-
tions.

VI. GAPS AND OPPORTUNITIES

Despite considerable advancements in driving behavior per-
sonalization, unexplored areas and unanswered questions per-
sist, offering potential opportunities for research and innovation.
This section illuminates these opportunities, pinpointing specific
gaps in the existing body of literature and proposing pathways
for future exploration to enrich our collective understanding and
knowledge.

A. Personalized Dataset and Validation

The first impediment in personalized driving behavior studies
is the notable absence of open-source datasets that are tailored to
individualized driving patterns. Such datasets are instrumental
for benchmarking and cross-validation in the development of
more precise and adaptive models.

Next, a personalized driving dataset in mixed traffic is signif-
icant. In the foreseeable future, human-driven and intelligent
vehicles are anticipated to coexist on the roads, and under-
standing the dynamics of their interactions becomes paramount.
Although datasets like Drive&Act [105] have provided bench-
marks for action recognition in automated vehicles, there is a

Base Station

GPS Unit

User Interface

Vehicle-edge-cloud digital twin platform for personalized dataset collection and algorithm validation [66].

pronounced need for personalized datasets in mixed traffic that
capture the intricacies of human driving behaviors in mixed
traffic environments. Answers to 1) how human drivers will
interact with other intelligent vehicles, and 2) how they will
behave in an intelligent vehicle, are worth studying.

Furthermore, the complexity of driving behaviors necessitates
a longitudinal approach to data collection. A brief segment of
trajectory or short-term data is often insufficient to encapsulate
the detailed and recurrent patterns of individual drivers since
factors like emotion, weather, and traffic conditions can intro-
duce variability. Long-term data collection emerges as a pivotal
element in distilling consistent and recurring driving patterns
amidst the noise of occasional and situational variations.

The validation of personalized models poses another chal-
lenge. The current paradigm often relies on post-implementation
assessment, gauging whether drivers are satisfied with the prod-
uct outcomes determined by the models. This approach under-
scores the necessity of incorporating drivers’ feedback more
integrally in the model evaluation and evolution processes. An-
other future research could explore the thresholds and triggers
for model updates, ensuring the models remain adaptive and
reflective of the drivers’ evolving behaviors and preferences.

The integration of digital twins in the driving behavior per-
sonalization has been identified as a promising avenue, although
it is yet to be fully explored and optimized. One of the cardinal
advantages of employing digital twins lies in their potential for
extensive data collection, which is pivotal for honing the accu-
racy and adaptability of driving behavior models. The support
of the cloud (e.g., AWS and similar cloud service) facilitate
the long-term recording and analysis of individual driving data.
With the continuous influx of new data, the adaptability of the
model over time ensures that the model dynamically reflects
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the evolving patterns, behaviors, and preferences of individual
drivers.

B. Personalized Perception Behavior

One significant gap in the current research is the sparse
discussion on personalized perception behavior, even within
the broader context of general perception behavior. Perception
behavior forms the foundational layer in the driving behavior
model, dictating how drivers assimilate information from their
surroundings. It is crucial to acknowledge that the information
processed by each driver can vary significantly, due to various
factors including individual perception behaviors, prior experi-
ences, and situational awareness. A comprehensive understand-
ing of the types of information absorbed by drivers is essential
to accurately analyze the subsequent, distinct cognition and
actuation behavior.

The deficiency in personalized perception behavior study
is manifested in certain shortcomings. For instance, research
tends to analyze car-following behavior with a narrow focus,
predominantly scrutinizing the driver’s reactions to the vehicle
directly in front. However, in reality, drivers engage in a much
more complex perceptual process, continuously monitoring their
surroundings, including utilizing rear mirrors to gauge the ac-
tions of the vehicles behind them and potentially adjusting their
strategies accordingly, especially when they perceive they are
being tailgated. Furthermore, individual drivers exhibit unique
habits and preferences when it comes to observing the road
environment. For instance, while some carefully check over their
shoulder to gauge the traffic behind or in the blind spot, others
may only give a glance, relying more on mirrors or other cues.
An analysis of head positions [84], [177] could serve as a rich
data source, offering insights into how drivers perceive side-lane
traffic and enhancing the accuracy of lane change predictions.

Further research in this domain could potentially shed light
on how personalized perception behavior intertwines with cog-
nition and actuation phases. Therefore, highlighting the pivotal
role of perception behavior and advocating for more extensive
research in this area stands as a pressing need in the field,
poised to potentially revolutionize our understanding of driving
behavior from a more personalized and insightful vantage point.

C. Personalized Interaction Behavior

The study of personalized interaction behavior, while having
gained attention, is still an evolving field with marked gaps and
untapped opportunities. The complexity of interaction behavior
is woven by not only the individual driver’s habits, skills, and
responses but is also significantly influenced by the dynamic
interplay of multiple actors within the traffic system. Each
driver’s opinion on the interaction is different, and to model
their personalized interaction behavior, there is a noted absence
of comprehensive research addressing intricate questions: When
and under what circumstances does interaction occur? Who
initiates and who responds? What are the tangible and intan-
gible impacts of these interactions? Furthermore, the extent to
which drivers consciously aim to influence their environment
and respond to the perceived intentions of others is uncharted
territory. This raises other pivotal questions: Can we quantify the
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intensity of interactions? Can we map the trajectory of actions
and reactions in real-time driving scenarios, offering insights
into the fluid, adaptive nature of driving behaviors?

Addressing these gaps requires innovative methodologies and
tools capable of capturing and analyzing the multi-modal driver
interactions. Still, current interaction research [86] focuses more
on general multi-agent interaction and has barely scratched the
surface of understanding how a driver’s actions are influenced by
personalized driving patterns, incite reactions from surrounding
drivers, and vice versa. One of the profound fields is the appli-
cation of causality and circular causality analyses [6], [178] in
the study of interaction driving behaviors.

The pursuit of uncovering the secrets of personalized interac-
tion behaviors, their triggers, dynamics, and impacts, is not just
an academic endeavor but a critical pathway to making our roads
safer, more efficient, and harmonious spaces where technology
and humanity intersect seamlessly.

D. The Rise of Large Language Models

The incorporation of Language Learning Models (LLMs) is
emerging as a pivotal evolution in the domain of personalized
driving behavior modeling. The complex narratives of driving,
encompassing diverse scenarios and driver responses, can be
intricately mapped and communicated through the advanced lin-
guistic capabilities of LLMs. For example, LINGO-1 developed
by Wayve [179] employing LL.M-based vision-language-action
model (VLAM) for interpreting driving scenarios has demon-
strated a promising research direction. A LINGO-1-empowered
vehicle can inform the driver that it stopped because of pedes-
trians crossing the road. The capacity to explain the rationale
behind each vehicular movement in comprehensible language
not only enriches the driver’s situational awareness but also
fortifies the trust dynamics between the driver, the vehicle, and
the embedded Al systems.

The prospect of LLMs to model personalized driving be-
haviors presents a compelling advancement in the field of Al-
assisted driving. Envision Al systems, augmented by the ad-
vanced capabilities of LLMs, meticulously tailored to resonate
with each driver’s unique style and reactions. Different from
transcends traditional and generalized solutions, this approach
introduce a sophisticated Al co-pilot, which is designed to not
only interpret and forecast driving scenarios in real-time, but also
to do so through a lens that is distinctly tailored to each driver. By
elucidating decisions and maneuvers with remarkable clarity, it
demonstrates an intricate understanding of individual drivers’
preferences and patterns, thereby personalizing the driving ex-
perience to an unprecedented degree.

But the potential of LLMs extends even further. They offer a
transparent view of the reasoning behind each driving decision.
Drivers are not just passive recipients of information but are
engaged participants, gaining insights into their behaviors and
habits. If the AI's interpretation is not quite right, drivers can
offer feedback, creating a dynamic learning environment where
both the Al and driver evolve together. This synergy promises
not just a customized driving experience but also one that’s safer
and grounded in mutual understanding and trust. It’s a scenario
where technology and humanity intersect, each enhancing the
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other, leading to a new era of intelligent, personalized, and
explainable driving.

E. Discussion

As we navigated the methodologies of personalization in
driving behavior and analyzed the pros/cons of each type of
approach, it is crucial to consider three key points:

Personalization vs. Generalization: While personalization
enhances the driving experience, over-personalization might
constrain system flexibility and potentially induce over-reliance
that could compromise safety and negatively impact overall
traffic efficiency. The appropriate level of personalization is
driver-specific and calls for continued research and feedback.

Model Robustness: Personalized models need to handle di-
verse driving scenarios effectively, but overfitting can pose chal-
lenges. Robustness needs training on various scenarios, using
strategies to avoid overfitting, and regular model validation and
updates based on real-world performance.

Ethical and Privacy Concerns: As we collect and process
extensive amounts of sensitive personal data, this raises critical
questions regarding data security, privacy, consent, and own-
ership. Balancing the creation of highly personalized driving
models with ethical imperatives and legal frameworks is essen-
tial. Safeguards need to be established to ensure data privacy and
security while enabling the beneficial aspects of personalization
(e.g., blockchain technology and federal learning [180]).

Constraints: Even though this review covers many aspects of
personalization in driving behavior, there are still some advanced
technologies, such as Virtual Reality (VR), Augmented Real-
ity (AR), and other wearable devices, that remain unexplored.
Integrating these technologies into data collection—whether in
simulation environments, NDS, or FOT-presents an unexplored
frontier that could significantly enhance the granularity and
accuracy of behavioral data for better personalization.

VII. CONCLUSION

In this paper, we proposed a comprehensive taxonomy for
personalized driving behavior, based on a thorough literature
review. This taxonomy is structured along the span of time, driv-
ing behavioral response pipeline, granularity, and interaction.
We explained the process of driving behavior personalization in
detail, focusing specifically on the development of personalized
behavior models. We elaborated on common personalization
approaches, providing detailed explanations supported by ex-
tensive literature. This work serves as a valuable resource for
future research and development in the field of personalization
in driving behavior.
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