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Abstract: Most existing shared automated mobility (SAM) services assume the door-to-door manner,
i.e., the pickup and drop-off (PUDO) locations are the places requested by the customers (or demand-
side). While some mobility services offer more affordable riding costs in exchange for a little walking
effort from customers, their rationales and induced impacts (in terms of mobility and sustainability)
from the system perspective are not clear. This study proposes a demand-side cooperative shared
automated mobility (DC-SAM) service framework, aiming to fill this knowledge gap and to assess
the mobility and sustainability impacts. The optimal ride matching problem is formulated and solved
in an online manner through a micro-simulation model, Simulation of Urban Mobility (SUMO).
The objective is to maximize the profit (considering both the revenue and cost) of the proposed
SAM service, considering the constraints in seat capacities of shared automated vehicles (SAVs) and
comfortable walking distance from the perspective of customers. A case study on a portion of a New
York City (NYC) network with a pre-defined fleet size demonstrated the efficacy and promise of the
proposed system. The results show that the proposed DC-SAM service can not only significantly
reduce the SAV’s operating costs in terms of vehicle-miles traveled (VMT), vehicle-hours traveled
(VHT), and vehicle energy consumption (VEC) by up to 53, 46 and 51%, respectively, but can also
considerably improve the customer service by 30 and 56%, with regard to customer waiting time
(CWT) and trip detour factor (TDF), compared to a heuristic service model. In addition, the demand-
side cooperation strategy can bring about additional system-wide mobility and sustainability benefits
in the range of 4–10%.

Keywords: demand-side cooperative shared automated mobility; microscopic traffic simulation;
optimal ride matching; environmental sustainability

1. Introduction

Shared and automated mobility has been prevailing and changing the paradigm
of next-generation urban transportation systems, leading to disruptive concepts such
as Mobility-as-a-Service (MaaS) and transportation network companies (TNCs), such
as Uber and Lyft. TNCs have been efficiently identifying the missing links between
demands (customers) and supplies (mobility service providers), and bridging them through
innovative platforms and smartphone apps to facilitate the completion of mobility needs.
In spite of never-ending criticisms to TNCs such as avoiding government regulations and
inducing excess traffic demands [1,2], they keep evolving by providing feasible solutions,
such as ride-hailing, pooled TNCs, and different tiers of transportation needs [3,4].

Recently, new car-pooling services emerging in major U.S. cities [5] offer the most
affordable ride price in exchange for a little walk of customers to/from designated pickup
and drop-off (PUDO) locations with respect to their origins and destinations. Such flexibil-
ity in PUDO locations can be considered as a demand-side cooperative strategy. It is similar
to the travelling salesman problems (TSP) with moving targets, which have been explored
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in the field of operation research for years [6,7]. Such flexibility in travel behaviors of
customers may impact overall system efficiency and sustainability [8], such as vehicle miles
traveled (VMT), emissions, and energy consumption, although the emerging on-demand
mobility services rely on many other types of studies, such as studies of existing services,
stated preference studies, and policy studies [9]. However, whether the anticipation holds
and how much SAM (shared automated mobility) service will be impacted due to the
demand-side cooperation is still unknown.

To address all the challenges mentioned above, or in other words to assess the mo-
bility and sustainability impacts of SAM services with demand-side cooperation, this
paper proposes a demand-side cooperative (DC) SAM service optimization model and an
open-sourced microscopic simulation platform. The DC ride matching is formulated as a
capacitated vehicle routing problem with repositioning (CVRPR) and is solved by a com-
mercial solver (Gurobi). Under the operational constraints, such as SAV seat capacities and
maximum walking distances, the DC ride matching strategies aims to optimize the overall
profit of the proposed SAM service, which considers both maximizing the serving rate (to
obtain more revenue) and minimizing the travel distance, travel time, and energy consump-
tion (to reduce the fleet operational cost). The proposed service can potentially benefit
the customers and the entire transportation system by reducing the detoured portions
and dead-heading time of SAV trips. The proposed DC-SAM is framed in the Simulation
of Urban MObility (SUMO), an open-source and multi-modal microscopic traffic simula-
tion tool. It is capable of modeling not only vehicular traffic dynamics in detail but also
customer behaviors (including customer–vehicle interactions) via its unique application
programming interfaces (APIs), i.e., “TraCI” [10]. This enables the proof-of-concept study
of the proposed DC-SAM service in a dynamic environment where the ride matching and
repositioning (i.e., re-optimization) are performed continuously as the system evolves (e.g.,
new on-demand ride requests pop up). In addition, a real-world network of New York
City (NYC) is coded and ride demands as well as background traffic are synthesized to
evaluate the performance of the proposed DC-SAM service.

Compared to existing studies, the major contributions of this paper involve but are
not limited to:

1. Development of a demand-side cooperative (on-demand) shared automated mobility
(DC-SAM) service which can further improve system efficiency.

2. Modeling of the proposed system in an open-source and multi-modal microscopic
simulation platform in a dynamic environment with more realistic settings, includ-
ing real-world roadway network, background traffic impacts, SAV dynamics, and
customer–SAV interactions. This platform has the potential for extended microscopic
traffic modeling and analysis related to MaaS.

The rest of this paper is organized as follows: Section 2 introduces the background
information and the relevant literature on SAM modeling and fleet operation. The proposed
framework of DC-SAM system and the ride matching algorithm are illustrated in Section 3,
followed by a NYC network case study as Section 4. The details of discussion, including
comparison study and comprehensive sensitivity analyses are elaborated in Section 5. The
last section concludes this paper with further discussion and future work.

2. Background

On-demand shared mobility has been considered as a cost-effective strategy to fulfill
transportation demand without compromising traffic congestion, fuel consumption and
air quality [11]. In particular, ridesharing refers to the rides in a vehicle among individual
travelers (a driver or customer) whose itinerary is in the proximity of both space and
time, although the system in which customers may not share the vehicle at the same time
can also increase congestion [1,2]. With the emergence of smartphones and the Internet,
for-hiring pooled services research and development has focused on online ride-matching
programs as well as real-time traveler information delivery. Thanks to both the rapid
advances in information and communication technologies and increased concerns for
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contemporary transportation issues (e.g., congestion, environment, and parking), more
affordable, secure, and accessible Mobility on Demand (MOD) [12], shared ride [13],
and pooled TNC services have been provided continuously by transportation network
companies (TNCs) via smartphone apps, such as Uber and Lyft [14]. Based on positional
elements, Furuhata et al. proposed a systematic classification scheme over the ridesharing
patterns and discussed some significant challenges and future directions, mainly from the
perspective of matching agencies [15].

Due to the significant progress of autonomous vehicles (AV) in the past decade, the
convergence of AV technology and pooled TNC service, i.e., shared automated mobility
(SAM) as well as shared automated vehicles (SAVs), has received considerable attention
and holds great promise for transforming urban land use as well as alleviating many
traffic-related issues in city regions. Some studies started from a limited-scale of SAV
deployment or designated transit service scenarios [16,17]. Burns et al. numerically
simulated a city-wide SAV fleet operation, where homogeneous trip rates and simplified
distance estimation were assumed to reduce computational load [18]. Brownell proposed
an autonomous taxi network (ATN) system with a ridesharing option as an alternative
transit solution [19]. A simplified agent-based model was proposed by Fagnant and
Kockelman to estimate the effectiveness of SAVs by replacing the fleet of private vehicles in
Austin, TX area [20]. Later on, they improved their modeling capabilities by introducing the
dynamic ridesharing option [21]. Similarly, Zhang et al. developed an agent-based model
for SAV operation with the consideration of dynamic ridesharing to explore its impacts on
urban parking demand (with the potential to eliminate up to 90% of parking spaces) [22].
Recent studies evaluated the opportunities of the SAM system to serve as the feeder to
facilitate public transit operation [23]. When integrating with transportation electrification,
the shared autonomous electric mobility (SAEM) system may have profound impacts on
both transportation and power grid operations [24–26]. However, almost all the modeling
efforts are limited to numerical analysis or agent-based approaches, which cannot represent
the traffic dynamics in realistic manner or the delicate interactions between different road
users (including both vehicles and customers). Very few studies have implemented the
ridesharing models in a microscopic simulation environment. Alam and Habib used
VISSIM to simulate the impacts of SAV operation in Halifax, Canada, but a rule-based SAV
dispatch algorithm was deployed for simplicity, and the results are far from being optimal
at the system level [27].

From a mathematical perspective, the dynamic ridesharing (DRS) problem can be
categorized into the well-known vehicle routing problem (VRP), or more specifically
dynamic VRP [28–30]. Due to the computational complexity of VRP, a myriad of studies
have been focused on developing efficient heuristic approaches to solve DRS problems
under different scenarios [31,32]. Furthermore, with the introduction of mobile apps and
improved services from TNCs, variants of DRS problems have emerged. Wang considered
a DRS problem where drivers or riders may accept or reject the ride-matching assignment
provided by the system [33]. Simonetto et al. proposed a computationally efficient dynamic
ridesharing algorithm based on a linear assignment problem and federated optimization
architecture [34]. In a follow-up study, they examined the impacts of cooperation and
competition between ridesharing companies through the Mobility-as-a-Service (MaaS)
platform, and showed that the competition could worsen the on-demand mobility service,
especially in the presence of customer preferences [35]. To improve system efficiency, Coltin
and Veloso proposed a heuristic algorithm to coordinate ridesharing routes and matching,
which may smoothly transfer customers between different vehicles [36].

Most of the aforementioned DRS studies, however, assumed door-to-door services.
Only a few consider more flexible pickup and drop-off (PUDO) locations, which may
potentially provide system-wide benefits for the ridesharing service due to the demand
agglomeration effects [37]. Li et al. developed an enhanced ridesharing system where the
users may be collectively picked up or dropped off, and the preliminary numerical study
showed that the proposed system could improve the overall travel time [38]. Zhao et al.
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also relaxed the PUDO location constraints in the ridesharing problem and performed
a case study in Matlab [39]. Although the results from these studies were promising,
their validation was limited to numerical analyses only without considering the dynamic
nature of the system. Therefore, modeling and evaluation of the proposed DRS system in a
microscopic traffic simulation environment would be very valuable, which is a focus of
our paper.

3. System Framework and Methodology

In transportation research, the performance of emerging mobility technologies and
services has been evaluated by transportation demand models and traffic simulation
tools. Macroscopic or mesoscopic simulation models, focusing on the network or link
level traffic dynamics, may not provide detailed behavior on an individual vehicle or
customer basis. Agent-based models such as MATSim are able to describe the activities
of every agent in a large scale, but not the delicate interactions between them (vehicles
and customers) or the traffic dynamics in a realistic manner. Most of the microscopic
simulation tools primarily use an old-fashioned vehicle-based paradigm where customers’
behavior in a SAM service cannot be well modeled. Some commercial software, such as
PTV VISSIM, has attempted to extend the capability of its products with MaaS features [40].
However, it is very challenging to integrate enough flexibility for demand-side behaviors
such as movements of pedestrians or customers [38,39]. To the best of our knowledge, a
demand-side cooperative shared automated mobility service has never been modeled and
evaluated in a simulation platform with a realistic roadway network and sophisticated
operational settings. The proposed demand-side cooperative shared automated mobility
(DC-SAM) service includes the framework in microscopic traffic simulation and dynamic
ride-matching algorithm.

3.1. System Framework in Simulation

The proposed system, built upon a microscopic simulation architecture of SUMO
with background traffic, consists of a group of customers, a fleet of shared automated
vehicles (SAVs), and a service coordinator. SUMO has been used for describing emerging
on-demand shared mobility in several studies [41,42]. The customer’s demand is generated
randomly over the simulation network. The request information is sent to the service
coordinator, including time stamp, location (with privacy consideration), group size, trip
origin (if different from the location upon request), and trip destination. As the core of
the DC-SAM system, the service coordinator keeps collecting the riding requests from cus-
tomers and monitoring the states of SAVs (e.g., location, seat availability) as well as network
traffic in real time. Then, it determines the optimal ride-matching for each customer–SAV
pair and the alternative pickup and drop-off (PUDO) locations, and communicates all this
information with designated customers. Once the customers confirm the matched SAVs
and PUDO locations (which may be mandated by customers or suggested by the system
and may be different from their trip origins and destinations), the service coordinator
will deliver walking guidance related to PUDO locations (if applicable) to customers, and
itineraries as well as suggested routes to SAVs. The customers follow the shortest distance
(walkable) paths and the travel times of walking are calculated by the lengths of walking
paths divided by the constant walking speed (5 kph), which is set in SUMO. To this end,
customers will proceed until the completion of their trips, and SAVs will follow the sys-
tem’s suggestion (or commands) to provide service. If any SAV completes its service round
without receiving further requests, it can be re-positioned to the suggested location by the
service coordinator. The system framework, key components (i.e., customers, SAVs, and
service coordinator), and associated flowcharts are illustrated in Figure 1.
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Figure 1. The system framework of demand-side cooperative shared automated mobility (DC-SAM)
service.

The proposed DC-SAM service operates in an “online” manner in the microscopic
simulation environment. Upon the start of simulation, the service coordinator collects
the information from both demand (i.e., customers) and supply (i.e., SAVs) sides. At a
certain frequency or within a System Optimization Time Window (e.g., every 120 s), the
system performs cooperative (involving multiple customers and multiple SAVs) optimal
ride matching, based on up-to-date information on unserved requests and available SAVs.
A SAV is available for new customer(s) only if the vehicle has delivered all customers and a
new system optimization time window reaches. The procedure continues until all demands
are satisfied, or the simulation ends. From the perspective of a customer (demand-side), a
random number generator (RNG) is coded to reflect the customer’s compliance (coopera-
tion) to accept alternative PUDO locations. For example, if the generated random number
is greater than a threshold, the customer will be cooperative and follow the guidance
about alternative PUDO locations suggested by the service coordinator. Otherwise, the
customer will stick to door-to-door service without demand-side cooperation. In a more
sophisticated mode choice model, many factors, such as walking distance penalty, could be
considered as one of the future steps in modeling. Once the trip itinerary gets confirmed,
the customer will move to the pickup location or stay at the origin to wait for riding on the
matched SAV. When the SAV arrives at the drop-off location, the customer will finish the
trip instantaneously or walk to his/her own destination. From the perspective of a SAV
(supply-side), it follows the ride matching plans and recommended routes as well as re-
positioning guidance by the service coordinator, throughout the simulation run to provide
the proposed DC-SAM service. Re-positioning of SAV to wait for potential customers is an
interesting research topic, and researchers have investigated different strategies and evalu-
ated the energy and mobility impacts [20,43]. For simplicity, the re-positioned locations in
this study are chosen based on the information of last round service (e.g., the destinations
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of customers). For a more complicated system, these locations may be identified from
spatiotemporal predictive analytics of historical SAM service demands [44]. It is also noted
that the service fleet is considered “automated” herein because: (1) parameters of SAVs in
simulation have been adjusted to model autonomous vehicles (AVs), which are different
from background traffic (non-AVs); and (2) all SAVs are assumed to perfectly follow all the
guidance provided by the system, including the re-positioning.

3.2. Alternative PUDO Locations

As a critical feature of the proposed DC-SAM service, the alternative PUDO locations
of the customer’s origin and destination may have multiple candidates depending on the
maximum walking distance and surrounding network topology. As shown in Figure 2, a
customer i is located at the origin and is able to walk from the origin to any place along with
all directions on the road network within the maximum walking distance (e.g., 0.5 mile),
enclosed by the blue ellipse. Nearby walkable routes are indicated as red solid lines along
the blocks. Theoretically, any place on the red lines could be considered as an alternative
location for picking up the customer. However, given all the potential travel directions
(arrows shown in Figure 2) of a SAV while completing the customer’s pickup, only a
limited number of key candidate locations within the maximum walking distance need to
be considered. The alternative locations for dropping off in the simulation are identified
in a similar way. In practice, other factors such as parking restrictions and unsafe streets
could be considered for determining alternative PUDO locations. In addition, to facilitate
the modeling of cooperation levels by customers (demand-side), origin and destination
locations are also included in the candidate PUDO location set.

Figure 2. An example illustrating alternative pickup locations.

3.3. Ride Matching

The ride matching procedure generates a dispatching plan for SAVs and determines
the PUDO locations for customers, which is a critical component of the proposed system.
Optimization models are proposed and implemented in the simulation framework, while a
heuristic model of ride matching is also introduced in the following section as the baseline
scenario for comparison.

3.3.1. Heuristic Model

This model calculates a ride matching plan according to the spatiotemporal travel
information of customers and SAVs in a heuristic manner, which has been used in the
early “door-to-door” deployment of SAM services and supply chains [45]. In this model,
a spatiotemporal incremental matching algorithm assigns each customer to a SAV and
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forms the service sequence. First, the potential customers are sorted by the ride request
time ascendingly. The earlier the customer’s request time is, the higher the priority is to
be served. Then, SAVs are ordered by the route distance to Customer r ascendingly. For
the nearest SAV v, if it is available, Customer r will be matched to SAV v and both of them
are recorded in a customer–SAV mapping dictionary as M = {v : [r]}. Otherwise, SAV
v cannot serve Customer r and the second nearest available SAV v′ will be checked until
either all potential customers are assigned, or no SAVs are available.

From a SAV viewpoint, it could be assigned with several customers (up to its seat
capacity), e.g., M = {v : [r1, r2, r3]} for a 3-seat SAV, where the assigned customers are
ascendingly ordered by the request time. All customers are delivered in the order of
pickup. The algorithm outputs the mapping dictionary M for vehicle routing. With that, a
First-Come-First-Served (FCFS) logic is applied to determine the PUDO sequence of the
SAV. In addition, all customers have to be picked up first and then delivered in the order
listed in the customer-SAV dictionary. For instance, for M = {v : [r1, r2, r3]}, the service
sequence of SAV v is p(r1), p(r2), p(r3), d(r1), d(r2), and d(r3), where p(·) and d(·) denote
the SAV’s pickup and drop-off actions, respectively. Based on the sequence, the SAV takes
the time-dependent shortest paths (TDSP), which consider the real-time network traffic
conditions (e.g., link travel times), to connect PUDO locations.

The main purpose/scope of this heuristic model is to avoid the long customer waiting
times for all requests (which is considered as one of the major concerns for pooled TNCs)
rather than to maximize the system profit. The heuristic model is severed as a benchmark
for comparing with other optimal ride matching models (ODC, Optimization Model
with Demand-side Cooperation, and ONDC, Optimization Model without Demand-side
Cooperation) proposed in this study. In SUMO, the real-time network traffic condition can
be accessed via an application programming interface (API) for shortest path finding. In
the real world, such information can be estimated if a large-scale traffic surveillance system
is deployed.

3.3.2. Optimization Model with Demand-Side Cooperation (ODC)

The ride matching optimization with demand-side cooperation is modeled as a 0–1
binary integer programming problem with a directed graphic structure shown in Figure 3.
In this study, an API is developed in Python for the SUMO simulation to solve this ride
matching optimization problem online using the Gurobi Optimizer, which is an efficient
solver for integer programming [46]. Before elaborating the model details, parameters and
decision variables in the optimization are listed in Table 1. Note that ni(j) may include
Oni(j) or Dni(j). Furthermore, DSAV

r is a dummy node for the completeness of the network,
i.e., to connect the final drop-off location of last service round with the origin of new service
round. Depending on the re-positioning strategy, the cost from Dni(j) to DSAV

r or from
OSAV

r to Oni(j) may vary.

Table 1. Parameters (PARAM.) and Variable (VAR.) list of ride matching optimization models.

PARAM. Description

Rni(j) ride request Rni(j) ,
{

tni(j), Oni(j), Dni(j), sn(j)

}
ni(j) jth alternative location of request i

tni(j) departure time of request iat jth alternative location

Oni(j) jth alternative pickup location (node) of request i

Dni(j) jth alternative drop-off location (node) of request i

sni(j) size (i.e., the number of customers) of request i at jth alternative location;

OSAV
r origin of rth SAV
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Table 1. Cont.

PARAM. Description

DSAV
r destination of rth SAV

CSAV
r capacity of rth SAV

cr,ni(j),nk(l) cost (e.g., travel distance) for rth SAVtraveling from node ni(j) to node nk(l)

pr,ni(j) revenue of jth alternative location of request iserved by rth SAV

M total number of requests

R total number of SAVs

Ni total number of alternative locations of request i

Var. Description

yr,ni(j)
binary variable indicates that the rth SAV visits jth alternative location of

request i (1-visited; 0-not visited)

xr,ni(j), nk(l)
binary variable indicates that the rth SAVselects a route from node ni(j) to

node nk(l)(1-selected; 0-not selected)

Figure 3. A directed graphical structure of demand-side cooperative dispatching formulation for
one SAV.

The objective of the ride matching problem is to maximize the profit of the proposed
DC-SAM service, considering both the revenue (positive) and the travel cost (negative)
of the SAV fleet. Depending on the SAV availability, each ride request may or may not
be served within the instant system optimization time window right after the request
generation. For those ride requests that cannot be served instantly, they will be logged in
the request list for the ride matching in the future system optimization time window. In
the simulation, no waiting time tolerance is set for each request, so all the requests would
be served eventually if the simulation time is long enough.
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The problem is formulated as follows:

max ∑R
r=1 ∑M

i=1 ∑Ni
j=1 pr,ni(j)·yr,ni(j)

−
[

∑R
r=1 ∑M

i=1 ∑Ni
j=1 cr,OSAV

r ,Oni(j)
·xr,OSAV

r ,Oni(j)

+∑R
r=1 ∑M

i,k:i 6=k ∑Ni
j=1 ∑Nk

l=1 cr,Oni(j),Onk(l)
·xr,Oni(j),Onk(l)

+∑R
r=1 ∑M

i,k ∑Ni
j=1 ∑Nk

l=1 cr,Oni(j),Dnk(l)
·xr,Oni(j),Dnk(l)

+∑R
r=1 ∑M

i,k:i 6=k ∑Ni
j=1 ∑Nk

l=1 cr,Dni(j),Dnk(l)
·xr,Dni(j),Dnk(l)

+∑R
r=1 ∑M

i=1 ∑Ni
j=1 cr,Dni(j),D

SAV
r
·xr,Dni(j),D

SAV
r

]
(1)

Subject to
∑R

r=1 yr,Oni(j)
≤ 1, ∀i, j

∑R
r=1 yr,Dni(j)

≤ 1, ∀i, j
(2)

(1) Each alternative location node, e.g., the jth alternative location for the ith request, in
either Origin (for pickup) set or Destination (for drop-off) set, is visited at most once
by whichever SAV.

∑M
i ∑Ni

j=1 sni(j)·yr,Oni(j)
≤ CSAV

r , ∀r (3)

(2) For the rth SAV, the number of pickup nodes visited within the same service round (or
system optimization time window) should not exceed its associated capacity, CSAV

r

∑M
i ∑Ni

j=1 xr,OSAV
r ,Oni(j)

≤ 1, ∀r (4)

(3) From its origin, the rth SAV will visit at most one pickup location.

∑M
i:i 6=k ∑Ni

j=1 xr,Oni(j),Onk(l)
+ xr,OSAV

r ,Onk(l)
= yr,Onk(l)

, ∀k, l, r (5)

(4) For any SAV, each pickup node has at most one incoming link, which equals to yr,Onk(l)
.

∑M
k: k 6=i ∑

Nk
l=1 xr,Oni(j),Onk(l)

+
M

∑
k

∑Nk
l=1 xr,Oni(j),Dnk(l)

= yr,Oni(j)
, ∀i, j, r (6)

(5) For any SAV, each pickup node has at most one outgoing link, which equals to yr,Oni(j)
.

∑M
i, k ∑Ni

j=1 ∑Nk
l=1 xr,Oni(j),Dnk(l)

≤ 1, ∀r (7)

(6) After the rth SAV picks up all the customers in the origin node set, it will go to the
destination node set. In other words, at most, one link will be set up between the
origin node set and destination node set.

∑M
i: i 6=k ∑Ni

j=1 xr,Dni(j),Dnk(l)
+ ∑M

i ∑Ni
j=1 xr,Oni(j),Dnk(l)

= yr,Dnk(l)
, ∀k, l, r (8)

(7) For any SAV, each drop-off node has at most one incoming link, which equals to
yr,Dni(j)

∑M
k: k 6=i ∑

Nk
l=1 xr,Dni(j),Dnk(l)

+ xr,Dni(j),D
SAV
r

= yr,Dni(j)
, ∀i, j, r (9)

(8) For any SAV, each drop-off node has at most one outgoing link, which equals to
yr,Dni(j)

.

∑Ni
j=1 yr,Oni(j)

≤ 1, ∀i, r (10)
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(9) For any SAV and any request, there is at most one alternative pickup location selected.

∑Ni
j=1 yr,Dni(j)

≤ 1 ∀i, r (11)

(10) For any SAV and any request, there is at most one alternative drop-off location
selected.

3.3.3. Optimization Model without Demand-Side Cooperation (ONDC)

To demonstrate the benefits of demand-side cooperation, a similar ride matching
optimization problem to ODC is formulated without considering any alternative PUDO
locations besides the origin and destination specified by the customer (i.e., “door-to-door”
service). Therefore, all the nodes enclosed by the black dashed line in Figure 3. are
collapsed into one node. In other words, the Optimization Model without Demand-side
Cooperation (ONDC) can be considered as a special case of ODC where both j’s and l’s in
Equations (1)–(10) are reduced to 1.

3.4. Network Output Metrics

The service performance metrics defined in Table 2 are directly computed from simula-
tion results, such as trace data, vehicle stops, customer loading data, and service operation
plans. They may describe the level of service, mobility efficiency of SAV fleet, and cus-
tomers’ cooperation efforts, which encompass vehicle miles traveled (VMT), vehicle hour
traveled (VHT), trip detour factor (TDF), customer waiting time (CWT), customer walking
time (WKT), and customer walking distance (WKM). It is noted that TDF can be considered
as a surrogate metric to evaluate the customer’s loss (in terms of travel distance) due to
the shift from a dedicated service to a ridesharing service. Besides that, vehicle energy
consumption (VEC) indicates the energy and/or fuel consumed by the SAV fleets serving
all the shared riders or customers in the system. In this study, the fuel consumption and
tailpipe emissions are estimated by SUMO, based on the Handbook Emission Factors for
Road Transport (HBEFA) [46] where a typical gasoline-powered light-duty vehicle model
is adopted.

Table 2. Key service performance metrics.

Metrics Unit Description

VMT Vehicle-mile Vehicle miles traveled

VHT Vehicle-hour Vehicle time traveled in hour

TDF -

Trip detour factor: customer’s actual trip distance under the
pooled TNC service divided by the trip distance with

dedicated service (based on the time-dependent
shortest path).

CWT Second
Average customer’s waiting time; waiting time for the

matched vehicle moving to the pickup location and picking
the customer up.

WKT Second Customer’s time spent on walking to/from alternative
PUDO locations with respect to the origin and destination.

WKM Mile Customer’s walking distance to/from alternative PUDO
locations with respect to the origin and destination.

VEC Liter (gasoline) Vehicle energy/fuel consumption for serving all customers.

4. Case Study

The proposed demand-side cooperative shared automated mobility service (DC-SAM)
simulation was implemented and studied in SUMO with the New York City (NYC) network
(see Figure 4). The Open Street Map (OSM) provides the detailed roadway network and
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default traffic signal plans in the region, which is imported in the SUMO platform. Shared
automated vehicles (SAVs), SAV routes, background traffic, and movements of customers
(either waiting or on-board) are illustrated in Figure 4.

Figure 4. SUMO (Simulation of Urban Mobility) for the New York City network.

The SAM demand was extracted from a New York City Taxi and Uber Trips study [47],
which provided a vast amount of individual taxi trips in the city from January 2009 to
June 2015. In this paper, a small sample from one taxi company’s trip data on 1 June 2015
was selected. The original information of each trip includes pickup and drop-off (PUDO)
locations, PUDO times, customer counts, vendor information, and transaction data (i.e.,
fare). In the simulation, a total of 140 trips were selected as the baseline SAM demand and
synthesized according to the PUDO locations (as the surrogates of origins/destinations)
and pickup time (as the surrogate of request time).

4.1. Simulation Setup

Four vehicles with three available seats (i.e., the maximum occupancy per vehicle is 3)
were set as the SAV fleet to serve the SAM demand over the network. These SAV behaviors
were finetuned in the SUMO simulation by adjusting the driver imperfection indicator to be
0 (i.e., perfect driving), and setting the desired time headway to be 1.5 s, which is different
from the background traffic of human-driven vehicles (i.e., 2 s). At the beginning of the
simulation, these SAVs were assigned to random locations and got ready for the execution
of different ride matching models: 1) heuristic matching; 2) optimal matching without
demand-side cooperation (ONDC); and 3) optimal matching with demand-side cooperation
(ODC). Within every system optimization time window, the service coordinator monitored
available SAVs and unserved demands, based on which a designated pickup/drop-off
plan was calculated depending on the selected ride matching models. For the optimization
models (ODC and ONDC), a high enough revenue (10,000 units, a unit = 1 dollar or mile)
was set to incentivize SAVs to serve as many demands as possible. The travel cost from
one place to another is proportional to the route distance of the least-duration path, which
depends on the time-varying traffic conditions. After ride matching, the designated SAV
would move to pick up and drop off customers according to the assigned itinerary. To
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guarantee that the demand can be served exhaustedly, a long enough simulation horizon
(60,000 steps) was used. In addition, background traffic randomly generated at the rate
of one trip per second was introduced into the simulation network uniformly over time.
The computing platform to conduct the simulation is set up as follows: CPU—Intel i7 8700;
GPU—Nvidia 1660 Ti; OS—Windows 10 version 1909; SUMO 1.2.0; and Gurobi 8.1.1.

It is noted that a small-scale (in terms of optimization problem) test was presented
in this paper to prove the concept (i.e., to demonstrate the proposed DC-SAM service).
A major concern is the computational efficiency. It is well known that off-the-shelf opti-
mization solvers are not able to address instances with roughly more than 10 vehicles for
pooled TNC services with floating targets. In this study, the seat capacity was selected
as 3 to be consistent with the setting of a small vehicle. Our trial and error tests showed
that four vehicles with capacity of 3 seemed to reach the computational limitation that the
Gurobi optimization solver could handle. In addition, the number of alternative PUDO
locations would impact the computational time. In this study, each origin or destination
of the request in the simulation study has up to 4 alternative locations, including itself.
The computational efficiency problem may be solved by more efficient algorithms or more
powerful high-performance computing (HPC), which is out of the scope of this paper and
will be another important future research direction.

4.2. Determination of System Optimization Time Window

System optimization time window refers to the time interval when all the updated
information about riding requests and SAV statuses would be collected for the service
coordinator to perform the ride matching. It is considered as one of the most critical param-
eters that governs the tradeoff between SAM performance and computational efficiency.
Sensitivity analyses on this parameter have been conducted to evaluate its impacts. As
shown in Table 3, if the time window is short (e.g., 1 s), the service coordinator can respond
to the ride request instantly as long as there is any SAV available. This may result in
higher overhead in computational time and sub-optimality in terms of system performance
because there are less opportunities for SAVs to coordinate with each other for serving
the customers. On the other hand, if the time window is too long (e.g., 500 s), many
more customers and vehicles will be considered in the optimization which may lead to
significant computational burden for the Gurobi Optimizer and unsatisfactory customer
experience. In addition, due to the change in traffic dynamics, a longer time window might
not guarantee better system performance.

Table 3. Sensitivity analysis results on system optimization time window.

500 s 300 s 240 s 180 s 120 s 60 s 1 s

VMT (vehicle-mile) 302 309 293 289 283 304 293
VHT (vehicle-hour) 31.2 30.1 28.8 28.2 27.9 28.1 28.4

TDF 4.5 4.69 4.61 4.55 4.09 4.64 4.46
CWT (s) 869 836 806 745 817 779 846
WKT (s) 468 479 414 474 476 429 513

WKM (mile) 0.48 0.49 0.45 0.49 0.49 0.46 0.52
VEC 101.1 96.3 90.0 91.6 82.2 103.8 88.7

CPU Time (103) 18.3 12.0 11.4 14.1 9.0 11.7 12.1

It turns out that for the test scenarios (i.e., 140 SAM trips, 4 SAVs with 3 seats capacity
per vehicle, and the given background traffic), the “best” system optimization time window
is 120 s in terms of the majority of performance metrics listed in Table 3, such as VMT,
VHT, TDF, VEC, and CPU time (in second). For other parameters, e.g., CWT, WKT, and
WKM, the values for the 120 s case are comparable to the others. Therefore, in the following
simulation studies, the system optimization time window is set as 120 s.
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5. Discussion
5.1. Comparison of Different Ride Matching Strategies

The comparative simulation results across all different ride matching strategies, i.e.,
heuristic, ONDC, and ODC are shown in Table 4. From the SAV (or supply-side) perspec-
tive, both optimal strategies (ONDC and ODC) can remarkably reduce VMT, VHT, VEC,
and tailpipe emissions in the range of 43.4 to 53.3%, which indicates that the optimization
algorithms are much more efficient and sustainable in terms of serving SAM demands
with respect to the heuristic strategy. In addition, the proposed ODC strategy can further
improve the shared mobility performance compared to the ONDC strategy. For example,
the scenario with ODC can reduce VMT and VHT by 4.3 and 4.5%, respectively, compared
to the scenario with ONDC. In terms of environmental sustainability, demand-side coop-
eration can help further drop down the fuel consumption and pollutant emissions in the
range of 2.2–5.0%.

Table 4. Simulation results for three strategies.

Strategy
Performance Metrics

VMT VHT TDF CWT VEC (L) CO2 (kg) CO (kg) HC (g) NOx (g) PMx (g)

Heuristic 605.4 51.6 9.24 1159 155.3 361.2 9.33 50.4 150.6 7.06
ONDC 295.6 29.2 4.45 786 86.5 201.1 6.00 31.9 85.7 4.14
ODC 283.0 27.9 4.09 817 82.2 191.1 5.87 31.1 81.5 3.96

ONDC vs. Heur. −51.2% −43.4% −51.8% −32.2% −44.3% −44.3% −35.7% −36.7% −43.1% −41.4%
ODC vs. Heur. −53.3% −45.9% −55.7% −29.5% −47.1% −47.1% −37.1% −38.3% −45.9% −43.9%

ODC vs. ONDC −4.3% −4.5% −8.1% 3.9% −5.0% −5.0% −2.2% −2.5% −4.9% −4.3%

From the customer (demand-side) perspective, the results show that even without
demand-side cooperation, the optimal ride matching algorithm can significantly decrease
both TDF (by up to 55.7%) and CWT (by up to 32.2%), compared to the heuristic model.
The ODC strategy can further reduce TDF by 8.1% compared to the ONDC strategy. It
is hypothesized that the scenario with ODC strategy may further reduce the possibility
of SAV route detour due to the demand-side cooperation. The average CWTs for both
optimization scenarios are comparable (about 13 min), which are a bit higher than those
from TNC waiting time studies due to the sparsity of both demands and supplies in the
large urban network in this proof-of-concept study.

5.2. Sensitivity Analysis
5.2.1. SAM Service Demand

To inspect the sensitivity of system performance with respect to SAM service demands,
simulation runs with different numbers of requests (where the seat capacity is 3), i.e.,
20 trips, 60 trips, and 140 trips (benchmark), were tested and the results are shown in
Table 5. It can be observed that the performance metrics fluctuate within an acceptable
range, which provides some evidence for the system robustness.
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Table 5. Simulation results for ODC (Optimization Model without Demand-side Cooperation)
scenarios with different demand levels.

Metrics 20 trips 60 trips 140 trips (Benchmark)

VMT (vehicle-mile) 58.34 133.74 283.0
VHT (vehicle-hour) 8.30 15.25 27.9

TDF 4.53 4.26 4.09
CWT (s) 800 854 817
WKT (s) 480 464 476

WKM (mile) 0.48 0.47 0.49
VEC (L) 27.1 51.1 82.2
CO2 (kg) 63.0 118.9 191.1
CO (kg) 2.54 4.43 5.87
HC (g) 13.0 22.8 31.1

NOx (g) 27.4 51.3 81.5
PMx (g) 1.41 2.59 3.96

As SAM service demand increases, VMT, VHT, and environment-related metrics (such
as VEC and tailpipe emissions) increase correspondingly under the same supply capability
as expected. For TDF, an apparent decline trend can be seen as the demand level increases.
A hypothesis is that higher chances to coordinate the PUDO demands would be anticipated
in system optimization with the increase of requests. For other metrics, including CWT,
WKT, and WKM, no monotonic patterns (either decrease or increase) are observed, which
may be caused by random trip OD locations in such a sparse demand–supply scenario.

5.2.2. Vehicle Capacity

Vehicle capacity is another vital operational parameter that can impact the service
performance. The sensitivity analysis may provide some insight for early deployment of
the proposed DC-SAM service with suitable vehicle size. Different seat capacities of SAVs
(i.e., 1, 2, and 3 seats) were examined and the results are shown in Table 6. Please note that
all simulation scenarios here assume 140 trips, 120 s system optimization time window,
and 4 SAVs.

Table 6. Simulation results for ODC in different seat capacities.

Metrics. 1 seat 2 seats 3 seats (Benchmark)

VMT (vehicle-mile) 427.5 345.8 283.0
VHT (vehicle-hour) 43.4 33.4 27.9

TDF 2.53 3.49 4.09
CWT (second) 445 627 817
WKT (second) 384 399 476
WKM (mile) 0.43 0.44 0.49
VEC (liter) 122.0 103.2 82.2
CO2 (kg) 283.7 240.0 191.1
CO (kg) 10.06 7.94 5.87
HC (g) 52.3 41.5 31.1

NOx (g) 122.3 102.6 81.5
PMx (g) 6.12 5.05 3.96

According to the simulation results, as the seat capacity grows, most performance
measures, such as VMT, VHT, VEC, and pollutant emissions, decrease due to the improve-
ment of supply-side capability and potential system efficiency with optimal ride-matching.
Others, e.g., TDF, CWT, WKT, and WKM, increase due to more cooperative efforts be-
ing required from the customer side. In particular, for those scenarios with “1 seat”, the
situation can be considered as the automated “car-sharing” service dedicated to single
origin-destination pair. When comparing “1-seat” scenarios with the benchmark pooled
TNC services (i.e., “3-seat” scenarios), the experiment results indicate that VMT, VHT,
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and environment-related metrics increase by the range of 48.4–71.4%, but those demand-
side related metrics (including TDF, CWT, WKT and WKM) get reduced by the range of
12.2–45.5% due to more dedication to the service.

6. Conclusions and Future Work
6.1. Theoretical and Practical Implications

In this study, a demand-side cooperative shared automated mobility (DC-SAM) service
framework was developed to allow the customers (i.e., demand-side) to relax their pickup
and drop-off (PUDO) locations for improving the overall system efficiency (e.g., reducing
the detouring effects of SAVs at the cost of very limited walking loads from customers).
The problem was formulated as a binary integer programming and solved by using Gurobi,
a commercial optimization solver. The model was implemented in an innovative SUMO-
based SAM simulation platform which enables optimal ride matching in an online manner
via application programming interfaces (APIs). Results from the preliminary simulation
study indicated that the proposed system can significantly reduce the SAV’s operating costs
in terms of vehicle-miles traveled (VMT), vehicle-hours traveled (VHT), vehicle energy
consumption (VEC), and other pollutant emissions, and improve the quality of service
by reducing the customer waiting time (CWT) and trip detour factor (TDF), compared to
the heuristic algorithm. For example, according to Table 4, VMT, VHT, and VEC can be
reduced by 53.3, 45.9 and 47.1%, respectively, and CWT and TDF decrease by 29.5 and
55.7%, respectively, when using the proposed ODC strategy. In addition, the simulation
study showed that more benefits can be obtained by enabling the cooperative efforts from
customers under the optimal ride matching strategies with demand-side cooperation. The
range of mobility and environmental benefits may vary from 2.2 to 8.1%, depending on
the specific metrics. Based on the unique microscopic traffic simulation platform built in
this study, we extensively evaluated the proposed system under a variety of settings, such
as the number of service requests and SAV’s maximum occupancy. It should be noted
that the developed microscopic platform can lay a good foundation for further pursing
research related to multi-modal operation (e.g., curbside management) and applications of
emerging transportation technologies (e.g., connected and automated vehicles).

6.2. Limitations and Future Work

There are several limitations about the current work which will serve as our future
research directions to improve this work.

• The simulation scenario and mode choice model are simplified. As one of the future
steps, the optimization algorithm and simulation platform will be extended to handle
more complex and realistic scenarios, such as cancellations of request, considering
customers’ patience and preferences for waiting or walking in the mode choice model.

• Another limitation is the computational efficiency. Due to the nature of the problem
(i.e., NP-hard), applying a commercial optimization solver (Gurobi in this study)
may not be efficient enough for large-scale studies. Developing a meta-heuristic
algorithm (balancing between optimality and computational efficiency) to solve the
large-scale ride matching problem considering demand-side cooperation should be a
key direction of future research.

• Other emerging and shared modes can be integrated into the current framework,
such as fixed-route ridesharing services or micro-mobility services (e.g., e-scooters,
mopeds). The proposed simulation platform is flexible enough to accommodate all
these modes.

• Integration of zero-emissions vehicle operation, such as the combination of shared au-
tonomous electric vehicles with the management of charging facilities, will be another
interesting and important topic for further investigation, as transportation electrifica-
tion is considered as one of the major global trends in the not-too-distant future.
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